Localized biogeography-based optimization

被引:38
|
作者
Zheng, Yu-Jun [1 ]
Ling, Hai-Feng [2 ]
Wu, Xiao-Bei [1 ]
Xue, Jin-Yun [3 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
[2] PLA Univ Sci & Technol, Coll Field Engn, Nanjing 210007, Jiangsu, Peoples R China
[3] Jiangxi Normal Univ, Jiangxi Prov Lab High Performance Comp, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
Global optimization; Evolutionary algorithms (EA); Biogeography-based optimization (BBO); Local topologies; Differential evolution (DE); GENETIC ALGORITHM; MODELS;
D O I
10.1007/s00500-013-1209-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biogeography-based optimization (BBO) is a relatively new heuristic method, where a population of habitats (solutions) are continuously evolved and improved mainly by migrating features from high-quality solutions to low-quality ones. In this paper we equip BBO with local topologies, which limit that the migration can only occur within the neighborhood zone of each habitat. We develop three versions of localized BBO algorithms, which use three different local topologies namely the ring topology, the square topology, and the random topology respectively. Our approach is quite easy to implement, but it can effectively improve the search capability and prevent the algorithm from being trapped in local optima. We demonstrate the effectiveness of our approach on a set of well-known benchmark problems. We also introduce the local topologies to a hybrid DE/BBO method, resulting in three localized DE/BBO algorithms, and show that our approach can improve the performance of the state-of-the-art algorithm as well.
引用
收藏
页码:2323 / 2334
页数:12
相关论文
共 50 条
  • [31] Handling multiple objectives with biogeography-based optimization
    Ma H.-P.
    Ruan X.-Y.
    Pan Z.-X.
    International Journal of Automation and Computing, 2012, 9 (1) : 30 - 36
  • [32] Biogeography-based learning particle swarm optimization
    Xu Chen
    Huaglory Tianfield
    Congli Mei
    Wenli Du
    Guohai Liu
    Soft Computing, 2017, 21 : 7519 - 7541
  • [33] Variations of biogeography-based optimization and Markov analysis
    Ma, Haiping
    Simon, Dan
    Fei, Minrui
    Xie, Zhikun
    INFORMATION SCIENCES, 2013, 220 : 492 - 506
  • [34] Constrained Laplacian biogeography-based optimization algorithm
    Garg V.
    Deep K.
    International Journal of System Assurance Engineering and Management, 2017, 8 (Suppl 2) : 867 - 885
  • [35] Resolution of Spike Overlapping by Biogeography-Based Optimization
    Chiarion, Giovanni
    Mesin, Luca
    ELECTRONICS, 2021, 10 (12)
  • [36] Intelligent Biogeography-Based Optimization for Discrete Variables
    Lohokare, M. R.
    Pattnaik, S. S.
    Devi, S.
    Panigrahi, B. K.
    Das, S.
    Bakwad, K. M.
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1087 - +
  • [37] Biogeography-based learning particle swarm optimization
    Chen, Xu
    Tianfield, Huaglory
    Mei, Congli
    Du, Wenli
    Liu, Guohai
    SOFT COMPUTING, 2017, 21 (24) : 7519 - 7541
  • [38] Age-Structured Biogeography-based Optimization
    Shulda, Kartik
    Verma, Mayank
    Gupta, Daya
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 339 - 346
  • [39] Traveling Repairmen Problem: A Biogeography-Based Optimization
    Uzun, Gozde Onder
    Dengiz, Berna
    Kara, Imdat
    Karasan, Oya Ekin
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT - VOL 1, 2022, 144 : 506 - 515
  • [40] Improved Biogeography-Based Optimization Based on Affinity Propagation
    Wang, Zhihao
    Liu, Peiyu
    Ren, Min
    Yang, Yuzhen
    Tian, Xiaoyan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (08)