CROSSED MODULES FOR HOM-LIE-RINEHART ALGEBRAS

被引:8
|
作者
Zhang, Tao [1 ]
Han, Fengying [2 ]
Bi, Yanhui [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Nanchang Hangkong Univ, Coll Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China
关键词
Hom-Lie-Rinehart algebra; crossed module; cat(1)-Hom-Lie-Rinehart algebra;
D O I
10.4064/cm7170-3-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of crossed modules for Hom-Lie Rinehart algebras. A detailed study of their construction from actions and semidirect products of Hom-Lie Rinehart algebras is given. We also introduce the notions of cat(1)-Hom-Lie-Rinehart algebras. It is proved that the category of crossed modules of Hom-Lie Rinehart algebras and the category of cat(1)-Hom-Lie-Rinehart algebras are equivalent to each other.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Universal central extensions of braided crossed modules of Lie algebras
    Fernandez-Farina, Alejandro
    Ladra, Manuel
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (04): : 1013 - 1028
  • [32] Jacobi algebras and Lie-Rinehart-Jacobi algebras
    Massa, Eugene
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (03) : 1071 - 1089
  • [33] Abelian extensions and crossed modules of Horn-Lie algebras
    Manuel Casas, Jose
    Garcia-Martinez, Xabier
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (03) : 987 - 1008
  • [34] More on crossed modules in Lie, Leibniz, associative and diassociative algebras
    Casas, J. M.
    Casado, R. F.
    Khmaladze, E.
    Ladra, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (06)
  • [35] On Split Regular Hom-Leibniz-Rinehart Algebras
    Shuangjian GUO
    Xiaohui ZHANG
    Shengxiang WANG
    Journal of Mathematical Research with Applications, 2022, (05) : 481 - 498
  • [36] Almost contact Hom-Lie algebras and Sasakian Hom-Lie algebras
    Peyghan, E.
    Nourmohammadifar, L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (01)
  • [37] Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras
    Arnlind, Joakim
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [38] SHIFTED DOUBLE LIE-RINEHART ALGEBRAS
    Leray, Johan
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 594 - 621
  • [39] On Hom-Lie algebras
    Sheng, Yunhe
    Xiong, Zhen
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (12): : 2379 - 2395
  • [40] Fuzzy Hom-Lie Ideals of Hom-Lie Algebras
    Shaqaqha, Shadi
    AXIOMS, 2023, 12 (07)