Deformations of the Lie-Poisson sphere of a compact semisimple Lie algebra

被引:7
|
作者
Marcut, Ioan [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
基金
欧洲研究理事会;
关键词
Poisson geometry; semisimple Lie algebras of compact type;
D O I
10.1112/S0010437X13007689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A compact semisimple Lie algebra g induces a Poisson structure pi(S) on the unit sphere S(g*) in g*. We compute the moduli space of Poisson structures on S(g*) around pi(S). This is the first explicit computation of a Poisson moduli space in dimension greater or equal than three around a degenerate (i.e. not symplectic) Poisson structure.
引用
收藏
页码:568 / 578
页数:11
相关论文
共 50 条
  • [21] LORENTZ TRANSFORMATIONS AS LIE-POISSON SYMMETRIES
    SIMONI, A
    STERN, A
    YAKUSHIN, I
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) : 5588 - 5597
  • [22] On Extensions, Lie-Poisson Systems, and Dissipation
    Esen, Ogul
    Ozcan, Gokhan
    Sutlu, Serkan
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 327 - 382
  • [23] Banach Lie-Poisson Spaces and Reduction
    Anatol Odzijewicz
    Tudor S. Ratiu
    Communications in Mathematical Physics, 2003, 243 : 1 - 54
  • [24] Controllability of Lie-Poisson reduced dynamics
    Manikonda, V
    Krishnaprasad, PS
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2203 - 2207
  • [25] Banach Lie-Poisson spaces and reduction
    Odzijewicz, A
    Ratiu, TS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (01) : 1 - 54
  • [26] Charged particle in Lie-Poisson electrodynamics
    Basilio, B. S.
    Kupriyanov, V. G.
    Kurkov, M. A.
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (02):
  • [27] DYNAMICAL ASPECTS OF LIE-POISSON STRUCTURES
    LIZZI, F
    MARMO, G
    SPARANO, G
    VITALE, P
    MODERN PHYSICS LETTERS A, 1993, 8 (31) : 2973 - 2987
  • [28] Extensions of Banach Lie-Poisson spaces
    Odzijewicz, A
    Ratiu, TS
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (01) : 103 - 125
  • [30] A differential graded Lie algebra controlling the Poisson deformations of an affine Poisson variety
    Filip, Matej
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 2183 - 2195