A NEW PRIME p FOR WHICH THE LEAST PRIMITIVE ROOT (mod p) AND THE LEAST PRIMITIVE ROOT (mod p2) ARE NOT EQUAL

被引:0
|
作者
Paszkiewicz, A. [1 ]
机构
[1] Warsaw Univ Technol, Inst Telecommun, PL-00665 Warsaw, Poland
关键词
Prime generators; primitive roots; WIEFERICH; SEARCH;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the aid of a computer network we have performed a search for primes p < 10(12) and revealed a new prime p = 6692367337 for which its least primitive root (mod p) and its least primitive root (mod p(2)) are not equal.
引用
收藏
页码:1193 / 1195
页数:3
相关论文
共 50 条
  • [21] Lifting mod p Heisenberg representations to mod p2
    Tan, Nguyen Duy
    Tra, Nguyen Thi
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2024, 39 (01)
  • [22] ON THE MAGNITUDE OF THE LEAST PRIMITIVE ROOT
    MURATA, L
    ASTERISQUE, 1991, (198) : 253 - 257
  • [23] COMPUTATION OF THE LEAST PRIMITIVE ROOT
    Mcgown, Kevin J.
    Sorenson, Jonathan P.
    MATHEMATICS OF COMPUTATION, 2024,
  • [24] AVERAGE OF LEAST PRIMITIVE ROOT
    BURGESS, DA
    ELLIOTT, PDT
    MATHEMATIKA, 1968, 15 (29P1) : 39 - &
  • [25] Uniform bounds for the least almost-prime primitive root
    Martin, G
    MATHEMATIKA, 1998, 45 (89) : 191 - 207
  • [26] ON THE LEAST OF QUADRATIC NONRESIDUES (MOD-P)
    ZHENG, ZY
    CHINESE SCIENCE BULLETIN, 1993, 38 (08): : 621 - 627
  • [27] On characters of order p (mod p2)
    Murata, L
    ACTA ARITHMETICA, 1999, 87 (03) : 245 - 253
  • [28] On the existence of some special primitive roots mod p
    Han, Di
    Zhang, Wenpeng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (01): : 59 - 66
  • [29] On the least primitive root in number fields
    Wang TianZe
    Gong Ke
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) : 2489 - 2500
  • [30] On the least primitive root in number fields
    TianZe Wang
    Ke Gong
    Science China Mathematics, 2010, 53 : 2489 - 2500