BILINEAR CONSTRAINT BASED ADMM FOR MIXED POISSON-GAUSSIAN NOISE REMOVAL

被引:9
|
作者
Zhang, Jie [1 ,2 ]
Duan, Yuping [3 ]
Lu, Yue [1 ]
Ng, Michael K. [2 ]
Chang, Huibin [1 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed Poisson-Gaussian noise; total variation; alternating direction method of multipliers; bilinear constraint; convergence; ALTERNATING DIRECTION METHOD; AUGMENTED LAGRANGIAN METHOD; IMAGE-RESTORATION; CONVERGENCE ANALYSIS; MINIMIZATION; MULTIPLIERS; ALGORITHM;
D O I
10.3934/ipi.2020071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose new operator-splitting algorithms for the total variation regularized infimal convolution (TV-IC) model [6] in order to remove mixed Poisson-Gaussian (MPG) noise. In the existing splitting algorithm for TV-IC, an inner loop by Newton method had to be adopted for one nonlinear optimization subproblem, which increased the computation cost per outer loop. By introducing a new bilinear constraint and applying the alternating direction method of multipliers (ADMM), all subproblems of the proposed algorithms named as BCA (short for Bilinear Constraint based ADMM algorithm) and BCA(f) (short for a variant of BCA with fully splitting form) can be very efficiently solved. Especially for the proposed BCA(f), they can be calculated without any inner iterations. The convergence of the proposed algorithms are investigated, where particularly, a Huber type TV regularizer is adopted to guarantee the convergence of BCA(f). Numerically, compared to existing primal-dual algorithms for the TV-IC model, the proposed algorithms, with fewer tunable parameters, converge much faster and produce comparable results meanwhile.
引用
收藏
页码:339 / 366
页数:28
相关论文
共 50 条
  • [21] Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise
    Makitalo, Markku
    Foi, Alessandro
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 91 - 103
  • [22] POISSON-GAUSSIAN NOISE PARAMETER ESTIMATION IN FLUORESCENCE MICROSCOPY IMAGING
    Jezierska, Anna
    Talbot, Hugues
    Chaux, Caroline
    Pesquet, Jean-Christophe
    Engler, Gilbert
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1663 - 1666
  • [23] Variance-stabilization-based compressive inversion under Poisson or Poisson-Gaussian noise with analytical bounds
    Bohra, Pakshal
    Garg, Deepak
    Gurumoorthy, Karthik S.
    Rajwade, Ajit
    INVERSE PROBLEMS, 2019, 35 (10)
  • [24] Noise Parameter Mismatch in Variance Stabilization, With an Application to Poisson-Gaussian Noise Estimation
    Makitalo, Markku
    Foi, Alessandro
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (12) : 5348 - 5359
  • [25] Poisson-Gaussian Mixed Noise Removing for Hyperspectral Image via Spatial-spectral Structure Similarity
    Yang, Jingxiang
    Zhao, Yongqiang
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 3715 - 3720
  • [26] Global Optimization for Recovery of Clipped Signals Corrupted With Poisson-Gaussian Noise
    Marmin, Arthur
    Jezierska, Anna
    Castella, Marc
    Pesquet, Jean-Christophe
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 970 - 974
  • [27] FAST VARIATIONAL BAYESIAN SIGNAL RECOVERY IN THE PRESENCE OF POISSON-GAUSSIAN NOISE
    Marnissii, Yosra
    Zheng, Yuling
    Pesquet, Jean-Christophe
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 3964 - 3968
  • [28] PoGaIN: Poisson-Gaussian Image Noise Modeling From Paired Samples
    Baehler, Nicolas
    El Helou, Majed
    Objois, Etienne
    Okumus, Kaan
    Suesstrunk, Sabine
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2602 - 2606
  • [29] ITERATIVE POISSON-GAUSSIAN NOISE PARAMETRIC ESTIMATION FOR BLIND IMAGE DENOISING
    Jezierska, A.
    Pesquet, J. -C.
    Talbot, H.
    Chaux, C.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2819 - 2823
  • [30] A Blind Poisson-Gaussian Noise Separation Using Learning Copula Densities
    Ghazdali, Abdelghani
    Hadri, Aissam
    Laghrib, Amine
    Nachaoui, Mourad
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (11) : 6564 - 6590