Time-Space Fractional Burger's Equation on Time Scales

被引:6
|
作者
Neamaty, A. [1 ]
Nategh, M. [1 ]
Agheli, B. [2 ]
机构
[1] Univ Mazandaran, Dept Math, POB 47416-95447,Pasdaran St, Babol Sar 4741695447, Iran
[2] Islamic Azad Univ, Qaemshahr Branch, Dept Math, POB 163, Qaemshahr 163, Iran
来源
关键词
CALCULUS;
D O I
10.1115/1.4032258
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper deals with a newly born fractional derivative and integral on time scales. A chain rule is derived, and the given indefinite integral is being discussed. Also, an application to the traffic flow problem with a fractional Burger's equation is presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An inverse time-dependent source problem for a time-space fractional diffusion equation
    Li, Y. S.
    Wei, T.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 257 - 271
  • [22] Approximate solution to the time-space fractional cubic nonlinear Schrodinger equation
    Herzallah, Mohamed A. E.
    Gepreel, Khaled A.
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) : 5678 - 5685
  • [23] Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation
    Borikhanov, Meiirkhan. B. B.
    Ruzhansky, Michael
    Torebek, Berikbol. T. T.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (01) : 111 - 146
  • [24] Identifying an unknown source term in a time-space fractional parabolic equation
    Nguyen Van Thang
    Nguyen Van Duc
    Luong Duy Nhat Minh
    Nguyen Trung Thanh
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 166 (166) : 313 - 332
  • [25] An efficient computational approach for the solution of time-space fractional diffusion equation
    Santra, Sudarshan
    Mohapatra, Jugal
    [J]. INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (04): : 393 - 405
  • [26] General Pade approximation method for time-space fractional diffusion equation
    Ding, Hengfei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 221 - 228
  • [27] On a time-space fractional diffusion equation with a semilinear source of exponential type
    Nguyen, Anh Tuan
    Yang, Chao
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1354 - 1373
  • [28] A Galerkin finite element scheme for time-space fractional diffusion equation
    Zhao, Zhengang
    Zheng, Yunying
    Guo, Peng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1212 - 1225
  • [29] Difference numerical solutions for time-space fractional advection diffusion equation
    Zhang, Fangfang
    Gao, Xiaoyang
    Xie, Zhaokun
    [J]. BOUNDARY VALUE PROBLEMS, 2019,
  • [30] Time-space fractional Schrödinger like equation with a nonlocal term
    X.Y. Jiang
    [J]. The European Physical Journal Special Topics, 2011, 193 : 61 - 70