On the total outer-connected domination in graphs

被引:5
|
作者
Favaron, O. [1 ,2 ]
Karami, H. [3 ]
Sheikholeslami, S. M. [3 ,4 ]
机构
[1] Univ Paris 11, UMR 8623, LRI, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Total outer-connected dominating set; Total outer-connected domination number; Diameter;
D O I
10.1007/s10878-012-9531-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A set S of vertices of a graph G is a total outer-connected dominating set if every vertex in V(G) is adjacent to some vertex in S and the subgraph induced by Va-S is connected. The total outer-connected domination number gamma (toc) (G) is the minimum size of such a set. We give some properties and bounds for gamma (toc) in general graphs and in trees. For graphs of order n, diameter 2 and minimum degree at least 3, we show that and we determine the extremal graphs.
引用
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [1] On the total outer-connected domination in graphs
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 451 - 461
  • [2] GENERALIZATION OF THE TOTAL OUTER-CONNECTED DOMINATION IN GRAPHS
    Rad, Nader Jafari
    Volkmann, Lutz
    [J]. RAIRO-OPERATIONS RESEARCH, 2016, 50 (02) : 233 - 239
  • [3] On the outer-connected domination in graphs
    M. H. Akhbari
    R. Hasni
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2013, 26 : 10 - 18
  • [4] TOTAL OUTER-CONNECTED DOMINATION SUBDIVISION NUMBERS IN GRAPHS
    Favaron, O.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (03)
  • [5] Outer-connected domination in graphs
    Jiang, Hongxing
    Shan, Erfang
    [J]. UTILITAS MATHEMATICA, 2010, 81 : 265 - 274
  • [6] On the outer-connected domination in graphs
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) : 10 - 18
  • [7] Complexity of total outer-connected domination problem in graphs
    Panda, B. S.
    Pandey, Arti
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 199 : 110 - 122
  • [8] Outer-Connected Semitotal Domination in Graphs
    Aradais, Alkajim Ahadi
    Jamil, Ferdinand P.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1265 - 1279
  • [9] Unicyclic graphs with equal total and total outer-connected domination numbers
    Raczek, Joanna
    [J]. ARS COMBINATORIA, 2015, 118 : 167 - 178
  • [10] Outer-connected domination in 2-connected cubic graphs
    Wang, Shipeng
    Wu, Baoyindureng
    An, Xinhui
    Liu, Xiaoping
    Deng, Xingchao
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)