Outer-Connected Semitotal Domination in Graphs

被引:1
|
作者
Aradais, Alkajim Ahadi [1 ]
Jamil, Ferdinand P. [2 ,3 ]
机构
[1] MSU Tawi Tawi Coll Technol & Oceanog, Coll Educ, Intergrated Lab Sch, Bongao, Tawi Tawi, Philippines
[2] MSU Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan 9200, Philippines
[3] MSU Iligan Inst Technol, Premier Res Inst Sci & Math, Ctr Graph Theory, Iligan 9200, Philippines
来源
关键词
Semitotal dominating set; Semitotal domination number; Outer-connected dominating set; Outer-connected domination number;
D O I
10.29020/nybg.ejpam.v15i3.4461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and initiate the study of outer-connected semitotal domination in graphs. Given a graph G without isolated vertices, a set S of vertices of G is a semitotal dominating set if every vertex outside of S is adjacent to a vertex in S and every vertex in S is of distance at most 2 units from another vertex in S. A semitotal dominating set S of G is an outer-connected semitotal dominating set if either S = V (G) or S not equal V (G) satisfying the property that the subgraph induced by V (G) \ S is connected. The smallest cardinality (gamma) over tilde (t2)(G) of an outer-connected semitotal dominating set is the outer-connected semitotal domination number of G. First, we determine the specific values of (gamma) over tilde (t2)(G) for some special graphs and characterize graphs G for specific (small) values of (gamma) over tilde (t2)(G). Finally, we investigate the outer-connected semitotal dominating sets in the join, corona, and composition of graphs and, as a consequence, we determine their corresponding outer-connected semitotal domination numbers.
引用
收藏
页码:1265 / 1279
页数:15
相关论文
共 50 条
  • [1] On the outer-connected domination in graphs
    M. H. Akhbari
    R. Hasni
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2013, 26 : 10 - 18
  • [2] Outer-connected domination in graphs
    Jiang, Hongxing
    Shan, Erfang
    [J]. UTILITAS MATHEMATICA, 2010, 81 : 265 - 274
  • [3] On the outer-connected domination in graphs
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) : 10 - 18
  • [4] On the total outer-connected domination in graphs
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (03) : 451 - 461
  • [5] On the total outer-connected domination in graphs
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 451 - 461
  • [6] GENERALIZATION OF THE TOTAL OUTER-CONNECTED DOMINATION IN GRAPHS
    Rad, Nader Jafari
    Volkmann, Lutz
    [J]. RAIRO-OPERATIONS RESEARCH, 2016, 50 (02) : 233 - 239
  • [7] Outer-connected domination in 2-connected cubic graphs
    Wang, Shipeng
    Wu, Baoyindureng
    An, Xinhui
    Liu, Xiaoping
    Deng, Xingchao
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [8] TOTAL OUTER-CONNECTED DOMINATION SUBDIVISION NUMBERS IN GRAPHS
    Favaron, O.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (03)
  • [9] Complexity of total outer-connected domination problem in graphs
    Panda, B. S.
    Pandey, Arti
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 199 : 110 - 122
  • [10] Outer-Connected 2-Resolving Hop Domination in Graphs
    Mahistrado, Angelica Mae
    Rara, Helen
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02): : 1180 - 1195