Graph Signal Processing and Deep Learning: Convolution, Pooling, and Topology

被引:39
|
作者
Cheung, Mark [1 ]
Shi, John [1 ]
Wright, Oren [2 ]
Jiang, Lavendar Y. [1 ,3 ]
Liu, Xujin [1 ]
Moura, Jose M. F. [4 ,5 ,6 ,7 ]
机构
[1] Carnegie Mellon Univ, Elect & Comp Engn Dept, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Inst Software Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[5] Amer Assoc Advancement Sci, Pittsburgh, PA USA
[6] Portugal Acad Sci, Lisbon, Portugal
[7] US Natl Acad Engineers, Washington, DC USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
Convolution; Deep learning; Computer architecture; Graphical models; Filtering theory; Discrete Fourier transforms;
D O I
10.1109/MSP.2020.3014594
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning, particularly convolutional neural networks (CNNs), has yielded rapid, significant improvements in computer vision and related domains. But conventional deep learning architectures perform poorly when data have an underlying graph structure, as in social, biological, and many other domains. This article explores 1) how graph signal processing (GSP) can be used to extend CNN components to graphs to improve model performance and 2) how to design the graph CNN architecture based on the topology or structure of the data graph.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [11] Graph Multi-Convolution and Attention Pooling for Graph Classification
    Xu, Yuhua
    Wang, Junli
    Guang, Mingjian
    Jiang, Changjun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10546 - 10557
  • [12] Speech Signal Processing on Graphs: Graph Topology, Graph Frequency Analysis and Denoising
    Wang Tingting
    Guo Haiyan
    Lyu Bin
    Yang Zhen
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (05) : 926 - 936
  • [13] Speech Signal Processing on Graphs: Graph Topology, Graph Frequency Analysis and Denoising
    WANG Tingting
    GUO Haiyan
    LYU Bin
    YANG Zhen
    ChineseJournalofElectronics, 2020, 29 (05) : 926 - 936
  • [14] Topology-Aware Graph Pooling Networks
    Gao, Hongyang
    Liu, Yi
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4512 - 4518
  • [15] Early Detection of Alzheimer's Disease Using Graph Signal Processing and Deep Learning
    Padole, Himanshu
    Joshi, S. D.
    Gandhi, Tapan K.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (03): : 1655 - 1669
  • [16] Adaptive Graph Convolution Pooling for Brain Surface Analysis
    Gopinath, Karthik
    Desrosiers, Christian
    Lombaert, Herve
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 : 86 - 98
  • [17] Extreme Learning Machine for Graph Signal Processing
    Venkitaraman, Arun
    Chatterjee, Saikat
    Handel, Peter
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 136 - 140
  • [18] Deep Learning for Audio Signal Processing
    Purwins, Hendrik
    Li, Bo
    Virtanen, Tuomas
    Schlueter, Jan
    Chang, Shuo-Yiin
    Sainath, Tara
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2019, 13 (02) : 206 - 219
  • [19] Regularization by deep learning in signal processing
    Villamarin, Carlos Ramirez
    Suazo, Erwin
    Oraby, Tamer
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4425 - 4433
  • [20] Multimodal Graph for Unaligned Multimodal Sequence Analysis via Graph Convolution and Graph Pooling
    Mai, Sijie
    Xing, Songlong
    He, Jiaxuan
    Zeng, Ying
    Hu, Haifeng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)