Nonlinear Parametric Resonance of a Fractional Damped Axially Moving String

被引:12
|
作者
Yang, Tian-Zhi [1 ]
Yang, Xiaodong [2 ]
Chen, Fei [3 ]
Fang, Bo [1 ]
机构
[1] Shenyang Aerosp Univ, Dept Astronaut, Shenyang 110136, Peoples R China
[2] Beijing Univ Technol, Sch Mech Engn, Shenyang 100022, Peoples R China
[3] Shenyang Aerosp Univ, Dept Engn Mech, Shenyang 110136, Peoples R China
基金
中国国家自然科学基金;
关键词
axially moving string; fractional derivative Kelvin constitutive relation; nonlinear parametric resonance; steady-state response; TRANSVERSE VIBRATION; STABILITY;
D O I
10.1115/1.4024779
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonlinear parametric vibration of an axially accelerating viscoelastic string is investigated. The string is constituted by the fractional Kelvin model. The principal parametric resonance is analyzed by using an asymptotic approach. The modulation equation is derived from the solvability condition. Closed-form expressions of the amplitudes and the existence conditions of steady-state responses are obtained from the modulation equation. Numerical examples are presented to highlight the effects of fractional order and other system parameters on the responses.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Parametric resonance and nonlinear string vibrations
    Rowland, DR
    [J]. AMERICAN JOURNAL OF PHYSICS, 2004, 72 (06) : 758 - 766
  • [22] Nonlinear vibrations of spring-supported axially moving string
    A. Kesimli
    E. Özkaya
    S. M. Bağdatli
    [J]. Nonlinear Dynamics, 2015, 81 : 1523 - 1534
  • [23] The numerical study of the nonlinear dynamics of a light, axially moving string
    Koivurova, H.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2009, 320 (1-2) : 373 - 385
  • [24] Suppression of vibration in a nonlinear axially moving string by the boundary control
    Shahruz, SM
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3242 - 3243
  • [25] Nonlinear vibrations of spring-supported axially moving string
    Kesimli, A.
    Ozkaya, E.
    Bagdatli, S. M.
    [J]. NONLINEAR DYNAMICS, 2015, 81 (03) : 1523 - 1534
  • [26] DYNAMICAL BEHAVIOR OF AN AXIALLY MOVING STRING CONSTITUTED BY A FRACTIONAL DIFFERENTIATION LAW
    Demir, D. Donmez
    Sinir, B. G.
    Bildk, N.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2015, 39 (M2) : 283 - 290
  • [27] FREE AND FORCED RESPONSE OF AN AXIALLY MOVING STRING TRANSPORTING A DAMPED LINEAR-OSCILLATOR
    ZHU, WD
    MOTE, CD
    [J]. JOURNAL OF SOUND AND VIBRATION, 1994, 177 (05) : 591 - 610
  • [28] On Parametric Instability Boundaries of Axially Moving Beams with Internal Resonance
    Tang, You-Qi
    Zhang, Yuan-Xun
    Yang, Xiao-Dong
    [J]. ACTA MECHANICA SOLIDA SINICA, 2018, 31 (04) : 470 - 483
  • [29] On Parametric Instability Boundaries of Axially Moving Beams with Internal Resonance
    You-Qi Tang
    Yuan-Xun Zhang
    Xiao-Dong Yang
    [J]. Acta Mechanica Solida Sinica, 2018, 31 : 470 - 483
  • [30] Parametric resonance of an axially accelerating viscoelastic membrane with a fractional model
    Qing, Jiajuan
    Zhou, Shisheng
    Wu, Jimei
    Shao, Mingyue
    Tang, Jiahui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130