RECONFIGURING MINIMUM DOMINATING SETS: THE γ-GRAPH OF A TREE

被引:3
|
作者
Edwards, Michelle [1 ]
MacGillivray, Gary [1 ]
Nasserasr, Shahla [2 ]
机构
[1] Univ Victoria, Math & Stat, Victoria, BC, Canada
[2] Nova Southeastern Univ, Math, Ft Lauderdale, FL 33314 USA
基金
加拿大自然科学与工程研究理事会;
关键词
domination; reconfiguration;
D O I
10.7151/dmgt.2044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider gamma-graphs, which are reconfiguration graphs of the minimum dominating sets of a graph G. We answer three open questions about gamma-graphs of trees by providing upper bounds on the maximum degree, the diameter, and the number of minimum dominating sets. The latter gives an upper bound on the order of the gamma-graph.
引用
收藏
页码:703 / 716
页数:14
相关论文
共 50 条
  • [31] The average order of dominating sets of a graph
    Beaton, Iain
    Brown, Jason I.
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [32] A NOTE ON THE NUMBER OF DOMINATING SETS OF A GRAPH
    Wagner, Stephan
    UTILITAS MATHEMATICA, 2013, 92 : 25 - 31
  • [33] Bipartite theory on Neighbourhood Dominating and Global Dominating sets of a graph
    Venkatakrishnan, Y. B.
    Swaminathan, V.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 175 - +
  • [34] An independent dominating set in the complement of a minimum dominating set of a tree
    Henning, Michael A.
    Loewenstein, Christian
    Rautenbach, Dieter
    APPLIED MATHEMATICS LETTERS, 2010, 23 (01) : 79 - 81
  • [35] Domination number and minimum dominating sets in pseudofractal scale-free web and Sierpinski graph
    Shan, Liren
    Li, Huan
    Zhang, Zhongzhi
    THEORETICAL COMPUTER SCIENCE, 2017, 677 : 12 - 30
  • [36] On minimum intersection of two minimum dominating sets of interval graphs
    Chang, MS
    Hsu, CC
    DISCRETE APPLIED MATHEMATICS, 1997, 78 (1-3) : 41 - 50
  • [37] On the maximum number of minimum dominating sets in forests
    Alvarado, J. D.
    Dantas, S.
    Mohr, E.
    Rautenbach, D.
    DISCRETE MATHEMATICS, 2019, 342 (04) : 934 - 942
  • [38] On the Number of Minimum Total Dominating Sets in Trees
    Taletskii D.S.
    Journal of Applied and Industrial Mathematics, 2023, 17 (01) : 213 - 224
  • [39] Bounds on the maximum number of minimum dominating sets
    Connolly, Samuel
    Gabor, Zachary
    Godbole, Anant
    Kay, Bill
    Kelly, Thomas
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1537 - 1542
  • [40] Block graphs with unique minimum dominating sets
    Fischermann, M
    DISCRETE MATHEMATICS, 2001, 240 (1-3) : 247 - 251