RECONFIGURING MINIMUM DOMINATING SETS: THE γ-GRAPH OF A TREE

被引:3
|
作者
Edwards, Michelle [1 ]
MacGillivray, Gary [1 ]
Nasserasr, Shahla [2 ]
机构
[1] Univ Victoria, Math & Stat, Victoria, BC, Canada
[2] Nova Southeastern Univ, Math, Ft Lauderdale, FL 33314 USA
基金
加拿大自然科学与工程研究理事会;
关键词
domination; reconfiguration;
D O I
10.7151/dmgt.2044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider gamma-graphs, which are reconfiguration graphs of the minimum dominating sets of a graph G. We answer three open questions about gamma-graphs of trees by providing upper bounds on the maximum degree, the diameter, and the number of minimum dominating sets. The latter gives an upper bound on the order of the gamma-graph.
引用
收藏
页码:703 / 716
页数:14
相关论文
共 50 条
  • [1] Reconfiguring minimum dominating sets in trees
    Lemańska M.
    Żyliński P.
    Journal of Graph Algorithms and Applications, 2020, 24 (01) : 47 - 61
  • [2] Reconfiguring Minimum Independent Dominating Sets in Graphs
    Brewster, R. C.
    Mynhardt, C. M.
    Teshima, L. E.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 389 - 411
  • [3] Reconfiguring Dominating Sets in Minor-Closed Graph Classes
    Dieter Rautenbach
    Johannes Redl
    Graphs and Combinatorics, 2021, 37 : 2191 - 2205
  • [4] Reconfiguring Dominating Sets in Minor-Closed Graph Classes
    Rautenbach, Dieter
    Redl, Johannes
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2191 - 2205
  • [5] ON MINIMUM DOMINATING SETS WITH MINIMUM INTERSECTION
    GRINSTEAD, DL
    SLATER, PJ
    DISCRETE MATHEMATICS, 1990, 86 (1-3) : 239 - 254
  • [6] Maximum Number of Minimum Dominating and Minimum Total Dominating Sets
    Godbole, Anant
    Jamieson, Jessie D.
    Jamieson, William
    UTILITAS MATHEMATICA, 2014, 94 : 269 - 274
  • [7] On the number of minimum dominating sets and total dominating sets in forests
    Petr, Jan
    Portier, Julien
    Versteegen, Leo
    JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 976 - 993
  • [8] VERTICES CONTAINED IN ALL OR IN NO MINIMUM K-DOMINATING SETS OF A TREE
    Meddah, Nacera
    Blidia, Mostafa
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2014, 11 (01) : 105 - 113
  • [9] Vertices contained in all or in no Minimum Liar's Dominating Sets of a Tree
    Panda, B.S.
    Paul, S.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 93 : 65 - 90
  • [10] Vertices contained in all minimum paired-dominating sets of a tree
    Xue-gang Chen
    Czechoslovak Mathematical Journal, 2007, 57 : 407 - 417