Comprehensive reconstruction and in silico analysis of Aspergillus niger genome-scale metabolic network model that accounts for 1210 ORFs

被引:26
|
作者
Lu, Hongzhong [1 ]
Cao, Weiqiang [1 ]
Ouyang, Liming [1 ]
Xia, Jianye [1 ]
Huang, Mingzhi [1 ]
Chu, Ju [1 ]
Zhuang, Yingping [1 ]
Zhang, Siliang [1 ]
Noorman, Henk [2 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[2] DSM Biotechnol Ctr, Delft, Netherlands
关键词
Aspergillus niger; genome-scale metabolic model; multi-omics; glucoamylase; CONSTRAINT-BASED MODELS; RNA-SEQ;
D O I
10.1002/bit.26195
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aspergillus niger is one of the most important cell factories for industrial enzymes and organic acids production. A comprehensive genome-scale metabolic network model (GSMM) with high quality is crucial for efficient strain improvement and process optimization. The lack of accurate reaction equations and gene-protein-reaction associations (GPRs) in the current best model of A. niger named GSMM iMA871, however, limits its application scope. To overcome these limitations, we updated the A. niger GSMM by combining the latest genome annotation and literature mining technology. Compared with iMA871, the number of reactions in iHL1210 was increased from 1,380 to 1,764, and the number of unique ORFs from 871 to 1,210. With the aid of our transcriptomics analysis, the existence of 63% ORFs and 68% reactions in iHL1210 can be verified when glucose was used as the only carbon source. Physiological data from chemostat cultivations, C-13-labeled and molecular experiments from the published literature were further used to check the performance of iHL1210. The average correlation coefficients between the predicted fluxes and estimated fluxes from C-13-labeling data were sufficiently high (above 0.89) and the prediction of cell growth on most of the reported carbon and nitrogen sources was consistent. Using the updated genome-scale model, we evaluated gene essentiality on synthetic and yeast extract medium, as well as the effects of NADPH supply on glucoamylase production in A. niger. In summary, the new A. niger GSMM iHL1210 contains significant improvements with respect to the metabolic coverage and prediction performance, which paves the way for systematic metabolic engineering of A. niger. Biotechnol. Bioeng. 2017;114: 685-695. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:685 / 695
页数:11
相关论文
共 50 条
  • [21] Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium
    Montagud, Arnau
    Navarro, Emilio
    Fernandez de Cordoba, Pedro
    Urchueguia, Javier F.
    Patil, Kiran Raosaheb
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [22] Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model
    Marcisauskas, Simonas
    Ji, Boyang
    Nielsen, Jens
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [23] Addressing uncertainty in genome-scale metabolic model reconstruction and analysis
    David B. Bernstein
    Snorre Sulheim
    Eivind Almaas
    Daniel Segrè
    Genome Biology, 22
  • [24] Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    Balaji Balagurunathan
    Sudhakar Jonnalagadda
    Lily Tan
    Rajagopalan Srinivasan
    Microbial Cell Factories, 11
  • [25] Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii
    Xu, Nan
    Zuo, Jiaojiao
    Li, Chenghao
    Gao, Cong
    Guo, Minliang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [26] Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions
    Zhou, Jingru
    Zhuang, Yingping
    Xia, Jianye
    MICROBIAL CELL FACTORIES, 2021, 20 (01)
  • [27] Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions
    Jingru Zhou
    Yingping Zhuang
    Jianye Xia
    Microbial Cell Factories, 20
  • [28] Reconstruction and Analysis of a Genome-Scale Metabolic Network for Eriocheir Sinensis Hepatopancreas
    Hao, Tong
    Wang, Bin
    Zhao, Lingxuan
    Feng, Xin
    Sun, Jinsheng
    IEEE ACCESS, 2018, 6 : 79235 - 79244
  • [29] Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    Förster, J
    Famili, I
    Fu, P
    Palsson, BO
    Nielsen, J
    GENOME RESEARCH, 2003, 13 (02) : 244 - 253
  • [30] Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network
    Martin-Jimenez, Cynthia A.
    Salazar-Barreto, Diego
    Barreto, George E.
    Gonzalez, Janneth
    FRONTIERS IN AGING NEUROSCIENCE, 2017, 9