Hyperfusion-Net: Hyper-densely reflective feature fusion for salient object detection

被引:44
|
作者
Zhang, Pingping [1 ]
Liu, Wei [2 ]
Lei, Yinjie [3 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Liaoning, Peoples R China
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 50005, Australia
[3] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Salient object detection; Image reflection separation; Multiple feature fusion; Convolutional Neural Network; REGION DETECTION; IMAGE; SEPARATION; FRAMEWORK; MODEL;
D O I
10.1016/j.patcog.2019.05.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salient Object Detection (SOD), which aims to find the most important region of interest and segment the relevant objects/items in that region, is an important yet challenging task in computer vision and image processing. This vision problem is inspired by the fact that human perceives the main scene elements with high priorities. Thus, accurate detection of salient objects in complex scenes is critical for human computer interaction. In this paper, we present a novel reflective feature learning framework, which results in high detection accuracy while maintaining a compact model design. The proposed framework utilizes a hyper-densely reflective feature fusion network (named HyperFusion-Net) to automatically predict the most important area and segment the associated objects in an end-to-end manner. Specifically, inspired by the human perception system and image reflection separation, we first decompose the input images into reflective image pairs by content-preserving transforms. Then, the complementary information of reflective image pairs is jointly extracted by an Interweaved Convolutional Neural Network (ICNN) and hierarchically combined with a hyper-dense fusion mechanism. Based on the fused multi-scale features, our method finally achieves a promising way of predicting salient objects, in which we cast the SOD as a pixel-wise classification problem. Extensive experiments on seven public datasets demonstrate that the proposed method consistently outperforms other state-of-the-art methods with a large margin. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:521 / 533
页数:13
相关论文
共 50 条
  • [21] On Semantic Object Detection with Salient Feature
    Li, Zhidong
    Chen, Jing
    ADVANCES IN VISUAL COMPUTING, PT II, PROCEEDINGS, 2008, 5359 : 782 - 791
  • [22] Salient Object Detection via Region Shape Feature Contrast and Saliency Fusion
    Ma, Xin
    Tian, Lihua
    Li, Chen
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2017), 2017, : 25 - 28
  • [23] Multi-attention guided feature fusion network for salient object detection
    Li, Anni
    Qi, JinQing
    Lu, Huchuan
    NEUROCOMPUTING, 2020, 411 : 416 - 427
  • [24] A multi-level feature weight fusion model for salient object detection
    Zhang, Shanqing
    Chen, Yujie
    Meng, Yiheng
    Lu, Jianfeng
    Li, Li
    Bai, Rui
    MULTIMEDIA SYSTEMS, 2023, 29 (03) : 887 - 895
  • [25] Multi-branch feature fusion and refinement network for salient object detection
    Yang, Jinyu
    Shi, Yanjiao
    Zhang, Jin
    Guo, Qianqian
    Zhang, Qing
    Cui, Liu
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [26] A multi-level feature weight fusion model for salient object detection
    Zhang Shanqing
    Chen Yujie
    Meng Yiheng
    Lu Jianfeng
    Li Li
    Bai Rui
    Multimedia Systems, 2023, 29 : 887 - 895
  • [27] Multiscale Feature Fusion for Salient Object Detection of Strip Steel Surface Defects
    Zhang, Li
    Li, Xirui
    Sun, Yange
    Feng, Yan
    Guo, Huaping
    IEEE ACCESS, 2025, 13 : 42689 - 42702
  • [28] FCFIG-Net: feature complementary fusion and information-guided network for RGB-D salient object detection
    Du, Haishun
    Qiao, Kangyi
    Zhang, Wenzhe
    Zhang, Zhengyang
    Wang, Sen
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (12) : 8547 - 8563
  • [29] Learning Salient Feature for Salient Object Detection Without Labels
    Li, Shuo
    Liu, Fang
    Jiao, Licheng
    Liu, Xu
    Chen, Puhua
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (02) : 1012 - 1025
  • [30] Feature Refine Network for Salient Object Detection
    Yang, Jiejun
    Wang, Liejun
    Li, Yongming
    SENSORS, 2022, 22 (12)