Hyperfusion-Net: Hyper-densely reflective feature fusion for salient object detection

被引:44
|
作者
Zhang, Pingping [1 ]
Liu, Wei [2 ]
Lei, Yinjie [3 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Liaoning, Peoples R China
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 50005, Australia
[3] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Salient object detection; Image reflection separation; Multiple feature fusion; Convolutional Neural Network; REGION DETECTION; IMAGE; SEPARATION; FRAMEWORK; MODEL;
D O I
10.1016/j.patcog.2019.05.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salient Object Detection (SOD), which aims to find the most important region of interest and segment the relevant objects/items in that region, is an important yet challenging task in computer vision and image processing. This vision problem is inspired by the fact that human perceives the main scene elements with high priorities. Thus, accurate detection of salient objects in complex scenes is critical for human computer interaction. In this paper, we present a novel reflective feature learning framework, which results in high detection accuracy while maintaining a compact model design. The proposed framework utilizes a hyper-densely reflective feature fusion network (named HyperFusion-Net) to automatically predict the most important area and segment the associated objects in an end-to-end manner. Specifically, inspired by the human perception system and image reflection separation, we first decompose the input images into reflective image pairs by content-preserving transforms. Then, the complementary information of reflective image pairs is jointly extracted by an Interweaved Convolutional Neural Network (ICNN) and hierarchically combined with a hyper-dense fusion mechanism. Based on the fused multi-scale features, our method finally achieves a promising way of predicting salient objects, in which we cast the SOD as a pixel-wise classification problem. Extensive experiments on seven public datasets demonstrate that the proposed method consistently outperforms other state-of-the-art methods with a large margin. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:521 / 533
页数:13
相关论文
共 50 条
  • [1] Looking at Boundary: Siamese Densely Cooperative Fusion for Salient Object Detection
    Li, Junxia
    Wang, Ziyang
    Pan, Zefeng
    Liu, Qingshan
    Guo, Dongyan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3580 - 3593
  • [2] Feature extraction and fusion network for salient object detection
    Dai, Chao
    Pan, Chen
    He, Wei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (23) : 33955 - 33969
  • [3] Feature extraction and fusion network for salient object detection
    Chao Dai
    Chen Pan
    Wei He
    Multimedia Tools and Applications, 2022, 81 : 33955 - 33969
  • [4] Hierarchical Feature Fusion Network for Salient Object Detection
    Li, Xuelong
    Song, Dawei
    Dong, Yongsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 9165 - 9175
  • [5] Selective feature fusion network for salient object detection
    Sun, Fengming
    Yuan, Xia
    Zhao, Chunxia
    IET COMPUTER VISION, 2023, 17 (04) : 483 - 495
  • [6] HYPER FEATURE FUSION PYRAMID NETWORK FOR OBJECT DETECTION
    Huang, Shouzhi
    Li, Xiaoyu
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Men, Aidong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [7] MFUR-Net: Multimodal feature fusion and unimodal feature refinement for RGB-D salient object detection
    Feng, Zhengqian
    Wang, Wei
    Li, Wang
    Li, Gang
    Li, Min
    Zhou, Mingle
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [8] MFC-Net : Multi-feature fusion cross neural network for salient object detection
    Wang, Zhenyu
    Zhang, Yunzhou
    Liu, Yan
    Liu, Shichang
    Coleman, Sonya
    Kerr, Dermot
    IMAGE AND VISION COMPUTING, 2021, 113
  • [9] HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation
    Dolz, Jose
    Gopinath, Karthik
    Yuan, Jing
    Lombaert, Herve
    Desrosiers, Christian
    Ben Ayed, Ismail
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) : 1116 - 1126
  • [10] FULLY CONVOLUTIONAL NETWORK WITH DENSELY FEATURE FUSION MODELS FOR OBJECT DETECTION
    Huang, Shouzhi
    Li, Xiaoyu
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Men, Aidong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,