High-Throughput Measurement of the Long Excited-state Lifetime of Quantum Dots in Flow Cytometry

被引:1
|
作者
Dahal, Eshan [1 ]
Cao, Ruofan [2 ]
Jenkins, Patrick [2 ]
Houston, Jessica P. [2 ]
机构
[1] New Mexico State Univ, Dept Chem, Las Cruces, NM 88003 USA
[2] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA
关键词
quantum dots; flow cytometry; fluorescence lifetime; time-resolved assay; CELLS; SIGNALS;
D O I
10.1117/12.2037866
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The long fluorescence lifetime of quantum dots (QDs) is not often utilized in high-throughput bioassays, despite of the potential for the lifetime to be an optimum parameter for multiplexing with spectrally overlapping excitable species that have short fluorescence lifetimes. The limitation of currently available instruments that can rapidly resolve complex decay kinetics of QDs contributes to this dearth. Therefore work in our laboratory is focused on developing unique and reliable frequency-domain flow cytometry (FDFC) systems as well as QDs applications where fluorescence dynamics are exploited. In this paper we demonstrate both by simulation and experimental validation, the viability of rapidly capturing the fluorescence lifetime of QDs from single QDs-labeled cells and microspheres by employing a home-built FDFC system. With FDFC theory we simulated measurements of long-lived QDs decays and evaluated the potential to discriminate multi-exponential decay profiles of QDs from typical cellular autofluorescence lifetimes. Our FDFC simulation work included calculations of fluorescence phase-shifts at multiple modulation frequencies extracted from square wave modulation signals (i.e. similar to heterodyning frequency-domain spectroscopy). Experimental work to support the result from our simulations involved acquiring measurements from real samples and processing them for multi-frequency phase shifts. Additionally the average excited-state lifetimes of QDs (streptavidin conjugated CdSe/Zns and oleic acid coated CdSxSe1-x/ZnS) measured were found to be greater than 15 ns. The average lifetime results were consistent with published literature values as well as verified with independent time domain measurements. This work opens the possibility of developing powerful bioassays using FDFC based on the long fluorescence lifetime of QDs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots
    Zhang, L
    Boggess, TF
    Gundogdu, K
    Flatté, ME
    Deppe, DG
    Cao, C
    Shchekin, OB
    APPLIED PHYSICS LETTERS, 2001, 79 (20) : 3320 - 3322
  • [32] Label-free high-throughput imaging flow cytometry
    Mahjoubfar, A.
    Chen, C.
    Niazi, K. R.
    Rabizadeh, S.
    Jalali, B.
    FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS XIV, 2014, 8972
  • [33] Recent advances in high-throughput flow cytometry for drug discovery
    Ding, Mei
    Baker, David
    EXPERT OPINION ON DRUG DISCOVERY, 2021, 16 (03) : 303 - 317
  • [34] Flow cytometry analysis techniques for high-throughput biodefense research
    Jett, JH
    Cai, H
    Habbersett, RC
    Keller, RA
    Larson, EJ
    Marrone, BL
    Nolan, JP
    Song, XD
    Swanson, B
    White, PS
    FIREPOWER IN THE LAB: AUTOMATION IN THE FIGHT AGAINST INFECTIOUS DISEASES AND BIOTERRORISM, 2001, : 193 - 201
  • [35] High-Throughput Multi-parametric Imaging Flow Cytometry
    Rane, Anandkumar S.
    Rutkauskaite, Justina
    deMello, Andrew
    Stavrakis, Stavros
    CHEM, 2017, 3 (04): : 588 - 602
  • [36] Discovery of Regulators of Receptor Internalization with High-Throughput Flow Cytometry
    Wu, Yang
    Tapia, Phillip H.
    Fisher, Gregory W.
    Simons, Peter C.
    Strouse, J. Jacob
    Foutz, Terry
    Waggoner, Alan S.
    Jarvik, Jonathan
    Sklar, Larry A.
    MOLECULAR PHARMACOLOGY, 2012, 82 (04) : 645 - 657
  • [37] High-Throughput Flow Cytometry Data Normalization for Clinical Trials
    Finak, Greg
    Jiang, Wenxin
    Krouse, Kevin
    Wei, Chungwen
    Sanz, Ignacio
    Phippard, Deborah
    Asare, Adam
    De Rosa, Stephen C.
    Self, Steve
    Gottardo, Raphael
    CYTOMETRY PART A, 2014, 85 (03) : 277 - 286
  • [38] Imaging Flow Cytometry for High-Throughput Phenotyping of Synthetic Cells
    Godino, Elisa
    Sierra, Ana Maria Restrepo
    Danelon, Christophe
    ACS SYNTHETIC BIOLOGY, 2023, 12 (07): : 2015 - 2028
  • [39] High-throughput autofluorescence flow cytometry of breast cancer metabolism
    Shah, Amy T.
    Cannon, Taylor M.
    Higginbotham, Jim N.
    Skala, Melissa C.
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS XII, 2016, 9689
  • [40] Hidden Secrets Behind Dots: Improved Phytoplankton Taxonomic Resolution Using High-Throughput Imaging Flow Cytometry
    Dunker, Susanne
    CYTOMETRY PART A, 2019, 95A (08) : 854 - 868