Bootstrapping the error of Oja's algorithm

被引:0
|
作者
Lunde, Robert [1 ]
Sarkar, Purnamrita [2 ]
Ward, Rachel [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Texas Austin, Austin, TX 78712 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) | 2021年 / 34卷
关键词
STOCHASTIC-APPROXIMATION; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of quantifying uncertainty for the estimation error of the leading eigenvector from Oja's algorithm for streaming principal component analysis, where the data are generated IID from some unknown distribution. By combining classical tools from the U-statistics literature with recent results on high-dimensional central limit theorems for quadratic forms of random vectors and concentration of matrix products, we establish a weighted X-2 approximation result for the sin2 error between the population eigenvector and the output of Ojas algorithm. Since estimating the covariance matrix associated with the approximating distribution requires knowledge of unknown model parameters, we propose a multiplier bootstrap algorithm that may be updated in an online manner. We establish conditions under which the bootstrap distribution is close to the corresponding sampling distribution with high probability, thereby establishing the bootstrap as a consistent inferential method in an appropriate asymptotic regime.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] BOOTSTRAPPING THE MEAN INTEGRATED SQUARED ERROR
    CAO, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (01) : 137 - 160
  • [22] Generating chaos by Oja's rule
    Li, CG
    Liao, XF
    Yu, JB
    NEUROCOMPUTING, 2003, 55 (3-4) : 731 - 738
  • [23] Convergence analysis for Oja plus MCA learning algorithm
    Lv, JC
    Ye, M
    Yi, Z
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 810 - 814
  • [24] EvalRound Algorithm in CKKS Bootstrapping
    Kim, Seonghak
    Park, Minji
    Kim, Jaehyung
    Kim, Taekyung
    Min, Chohong
    ADVANCES IN CRYPTOLOGY- ASIACRYPT 2022, PT II, 2022, 13792 : 161 - 187
  • [25] Thomas Algorithm's Error Estimation
    Tan, Fuping
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 290 - 292
  • [26] Global convergence of Oja's PCA learning algorithm with a non-zero-approaching adaptive learning rate
    Lv, Jian Cheng
    Yi, Zhang
    Tan, K. K.
    THEORETICAL COMPUTER SCIENCE, 2006, 367 (03) : 286 - 307
  • [27] The bootstrapping of the Yarowsky algorithm in real corpora
    Sanchez-de-Madariaga, Ricardo
    Fernandez-del-Castillo, Jose R.
    INFORMATION PROCESSING & MANAGEMENT, 2009, 45 (01) : 55 - 69
  • [28] Streaming k-PCA: Efficient guarantees for Oja’s algorithm, beyond rank-one updates
    Huang, De
    Niles-Weed, Jonathan
    Ward, Rachel
    Proceedings of Machine Learning Research, 2021, 134 : 2463 - 2498
  • [29] Streaming k-PCA: Efficient guarantees for Oja's algorithm, beyond rank-one updates
    Huang, De
    Niles-Weed, Jonathan
    Ward, Rachel
    CONFERENCE ON LEARNING THEORY, VOL 134, 2021, 134
  • [30] A Geometric Newton Method for Oja's Vector Field
    Absil, P. -A.
    Ishteva, M.
    De Lathauwer, L.
    Van Huffel, S.
    NEURAL COMPUTATION, 2009, 21 (05) : 1415 - 1433