Biases on cosmological parameter estimators from galaxy cluster number counts

被引:11
|
作者
Penna-Lima, M. [1 ,2 ]
Makler, M. [2 ]
Wuensche, C. A. [1 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
cluster counts; cosmological parameters from LSS; MASS FUNCTION; CONSTRAINTS; OMEGA(M);
D O I
10.1088/1475-7516/2014/05/039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Sunyaev-Zel'dovich (SZ) surveys are promising probes of cosmology - in particular for Dark Energy (DE) -, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objects and maximum likelihood estimators may present biases for such sample sizes. In this work we study estimators from cluster abundance for some cosmological parameters, in particular the DE equation of state parameter w(0), the amplitude of density fluctuations sigma(8), and the Dark Matter density parameter Omega(c). We begin by deriving an unbinned likelihood for cluster number counts, showing that it is equivalent to the one commonly used in the literature. We use the Monte Carlo approach to determine the presence of bias using this likelihood and study its behavior with both the area and depth of the survey, and the number of cosmological parameters fitted. Our fiducial models are based on the South Pole Telescope (SPT) SZ survey. Assuming perfect knowledge of mass and redshift some estimators have non-negligible biases. For example, the bias of sigma(8) corresponds to about 40% of its statistical error bar when fitted together with Omega(c), and w(0). Including a SZ mass-observable relation decreases the relevance of the bias, for the typical sizes of current SZ surveys. Considering a joint likelihood for cluster abundance and the so-called "distance priors", we obtain that the biases are negligible compared to the statistical errors. However, we show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity. Finally, we compute the confidence regions for the cosmological parameters using Fisher matrix and profile likelihood approaches, showing that they are compatible with the Monte Carlo ones. The results of this work validate the use of the current maximum likelihood methods for present SZ surveys, but highlight the need for further studies for upcoming experiments. To perform the analyses of this work, we developed fast, accurate, and adaptable codes for cluster counts in the framework of the Numerical Cosmology Library.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts
    Penna-Lima, Mariana
    Makler, Martin
    Wuensche, Carlos A.
    STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 262 - 265
  • [2] Exploring the cosmological synergy between galaxy cluster and cosmic void number counts
    Pelliciari, D.
    Contarini, S.
    Marulli, F.
    Moscardini, L.
    Giocoli, C.
    Lesci, G. F.
    Dolag, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (01) : 152 - 164
  • [3] Combining cosmological constraints from cluster counts and galaxy clustering
    Lacasa, F.
    STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 216 - 218
  • [4] Biased cosmological parameter estimation with galaxy cluster counts in the presence of primordial non-Gaussianities
    Trindade, A. M. M.
    Avelino, P. P.
    Viana, P. T. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (01) : 782 - 785
  • [5] Cosmological parameter estimation with the galaxy cluster abundance
    Viana, PTP
    UNSOLVED UNIVERSE: CHALLENGES FOR THE FUTURE, 2003, : 109 - 118
  • [6] Cosmological Parameter Estimation with the Galaxy Cluster Abundance
    Pedro T.P. Viana
    Astrophysics and Space Science, 2004, 290 : 149 - 158
  • [7] Cosmological parameter estimation with the galaxy cluster abundance
    Viana, PTP
    ASTROPHYSICS AND SPACE SCIENCE, 2004, 290 (1-2) : 149 - 158
  • [8] Combining cluster number counts and galaxy clustering
    Lacasa, Fabien
    Rosenfeld, Rogerio
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (08):
  • [9] Reproducing submillimetre galaxy number counts with cosmological hydrodynamic simulations
    Lovell, Christopher C.
    Geach, James E.
    Dave, Romeel
    Narayanan, Desika
    Li, Qi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 502 (01) : 772 - 793
  • [10] Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future
    Chaubal, P. S.
    Reichardt, C. L.
    Gupta, N.
    Ansarinejad, B.
    Aylor, K.
    Balkenhol, L.
    Baxter, E. J.
    Bianchini, F.
    Benson, B. A.
    Bleem, L. E.
    Bocquet, S.
    Carlstrom, J. E.
    Chang, C. L.
    Crawford, T. M.
    Crites, A. T.
    de Haan, T.
    Dobbs, M. A.
    Everett, W. B.
    Floyd, B.
    George, E. M.
    Halverson, N. W.
    Holzapfel, W. L.
    Hrubes, J. D.
    Knox, L.
    Lee, A. T.
    Luong-Van, D.
    McMahon, J. J.
    Meyer, S. S.
    Mocanu, L. M.
    Mohr, J. J.
    Natoli, T.
    Padin, S.
    Pryke, C.
    Ruhl, J. E.
    Ruppin, F.
    Salvati, L.
    Saro, A.
    Schaffer, K. K.
    Shirokoff, E.
    Staniszewski, Z.
    Stark, A. A.
    Vieira, J. D.
    Williamson, R.
    ASTROPHYSICAL JOURNAL, 2022, 931 (02):