Backscatter WERS for Trace Chemical Analyte Detection Using a Handheld Spectrometer

被引:4
|
作者
Tyndall, N. F. [1 ]
Kozak, D. A. [1 ]
Pruessner, M. W. [1 ]
McGill, R. A. [1 ]
Roberts, C. A. [1 ]
Stievater, T. H. [1 ]
Miller, B. L. [2 ]
Luta, E. [2 ]
Yates, M. Z. [2 ]
Emmons, E. D. [3 ]
Wilcox, P. G. [3 ]
Guicheteau, J. A. [3 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Univ Rochester, Med Sch, Rochester, NY 14642 USA
[3] US Army CCDC Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA
来源
CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XXI | 2020年 / 11416卷
关键词
WERS; Nanophotonics; Raman; Waveguide; Chemical Sensing; ENHANCED RAMAN-SPECTROSCOPY; SPECTRA;
D O I
10.1117/12.2559641
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Waveguide-enhanced Raman spectroscopy (WERS) enables the detection and identification of trace concentrations of vapor-phase analytes using a functionalized chip-scale photonic circuit. Here, we show that WERS signal can be collected from part-per-billion levels of targeted analytes in a backscatter geometry, which, compared to forward-scatter, simplifies component integration and is more tolerant of waveguide loss and modal interference. In addition, we discuss our progress towards a compact Raman sensing system that incorporates a handheld spectrometer and chip-scale optical filters. We demonstrate that a handheld, thermo-electrically cooled spectrometer can be used for backscatter WERS with a comparable signal-to-noise to that of a liquid-nitrogen cooled benchtop spectrometer. Finally, we describe efforts to integrate the dichroic Raman filter on-chip using arrays of unbalanced Mach-Zehnder interferometers. Measurements show filter performance sufficient for integration with WERS: Transmission of >80% of the laser in the cross port and Stokes signal in the through port; and extinction of the laser by >20 dB in the though port and of Stokes signal by >8 dB in the cross port.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)
    Gat, N
    Subramanian, S
    Barhen, J
    Sheffield, M
    Erives, H
    ELECTRO-OPTICAL TECHNOLOGY FOR REMOTE CHEMICAL DETECTION AND IDENTIFICATION II, 1997, 3082 : 156 - 164
  • [32] Multi-analyte detection handheld analyzer for point-of-care application with disposable biochips
    Dutta, M
    Chilukuru, S
    Ramasamy, L
    Zhu, XS
    Do, J
    Gao, C
    Hong, CC
    Puntambekar, A
    Han, J
    Lee, SH
    Trichur, R
    Choi, JW
    Nevin, JH
    Ahn, CH
    PROCEEDINGS OF THE IEEE SENSORS 2003, VOLS 1 AND 2, 2003, : 617 - 621
  • [33] Rapid detection of trace nitrobenzene in water via SERS using a portable Raman spectrometer
    Yang, Zhen-Wei
    Yu, Zhou
    Zheng, Ju-Fang
    Wang, Ya-Hao
    Zhou, Xiao-Shun
    ANALYTICAL METHODS, 2024, 16 (10) : 1531 - 1537
  • [34] Ambient ionisation mass spectrometry for the trace detection of explosives using a portable mass spectrometer
    Burns, Daniel
    Mathias, Simone
    McCullough, Bryan J.
    Hopley, Chris J.
    Douce, David
    Lumley, Nicola
    Bajic, Steve
    Sears, Patrick
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2022, 471
  • [35] Physicochemical analysis and adulteration detection in Malaysia stingless bee honey using a handheld near-infrared spectrometer
    Tan, Shi Hui
    Pui, Liew Phing
    Solihin, Mahmud Iwan
    Keat, Kong Seah
    Lim, Wei Hong
    Ang, Chun Kit
    JOURNAL OF FOOD PROCESSING AND PRESERVATION, 2021, 45 (07)
  • [36] Rapid and non-destructive detection of cassava flour adulterants in wheat flour using a handheld MicroNIR spectrometer
    Tao, Feifei
    Liu, Li
    Kucha, Christopher
    Ngadi, Michael
    BIOSYSTEMS ENGINEERING, 2021, 203 : 34 - 43
  • [37] Standoff detection of trace chemicals with laser dispersion spectrometer
    Nikodem, Michal
    ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES XII, 2015, 9486
  • [38] Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection
    Bykov, Sergei V.
    Asher, Sanford A.
    APPLIED SPECTROSCOPY, 2024, 78 (02) : 227 - 242
  • [39] Detection of volatile vapors emitted from explosives with a handheld ion mobility spectrometer
    Ewing, RG
    Miller, CJ
    FIELD ANALYTICAL CHEMISTRY AND TECHNOLOGY, 2001, 5 (05): : 215 - 221
  • [40] A handheld FTIR spectrometer with swappable modules for chemical vapor identification and surface swab analysis
    Doherty, Walter J., III
    Falvey, Brendan
    Rhodes, Greg Vander
    Krasnobaev, Leonid
    Vachon, Kenneth
    NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES VI, 2013, 8726