Jump diffusions;
Nonparametric estimation;
Drift estimation;
Model selection;
BOUNDS;
D O I:
10.1016/j.spa.2013.09.012
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this article, we consider a jump diffusion process (X-t)(t >= 0) observed at discrete times t = 0, Delta, ..., n Delta. The sampling interval Delta tends to 0 and n Delta tends to infinity. We assume that (X-t)(t >= 0) is ergodic, strictly stationary and exponentially beta-mixing. We use a penalised least-square approach to compute two adaptive estimators of the drift function b. We provide bounds for the risks of the two estimators. (C) 2013 Elsevier B.V. All rights reserved.
机构:
Univ Paris 05, UMR CNRS 8145, Lab MAP 5, 45 St Peres, F-75270 Paris 06, FranceUniv Paris 05, UMR CNRS 8145, Lab MAP 5, 45 St Peres, F-75270 Paris 06, France