Large triangles in the d-dimensional unit-cube

被引:0
|
作者
Lefmann, H [1 ]
机构
[1] TU Chemnitz, Fak Informat, D-09107 Chemnitz, Germany
来源
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider a variant of Heilbronn's triangle problem by asking for fixed dimension d greater than or equal to 2 for a distribution of n points in the d-dimensional unit-cube [0, 1](d) such that the minimum (2-dimensional) area of a triangle among these n points is maximal. Denoting this maximum value by Delta(d)(off-line) (n) and Delta(d)(on-line) (n) for the off-line and the on-line situation, respectively, we will show that c(1) (.)(log n)(1/(d-1)) /n(2/(d-1)) less than or equal to Delta(d)(off-line)(n) less than or equal to C-1/n(2/d) and c(2)/n(2/(d-1)) less than or equal to Delta(d)(on-line)(n) less than or equal to C-2/n(2/d) for constants c(1), c(2), C-1, C-2 > 0 which depend on d only.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [1] Large triangles in the d-dimensional unit cube
    Lefmann, Hanno
    THEORETICAL COMPUTER SCIENCE, 2006, 363 (01) : 85 - 98
  • [2] Online packing of d-dimensional boxes into the unit cube
    Janusz Januszewski
    Łukasz Zielonka
    Periodica Mathematica Hungarica, 2020, 81 : 98 - 114
  • [3] Online packing of d-dimensional boxes into the unit cube
    Januszewski, Janusz
    Zielonka, Lukasz
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (01) : 98 - 114
  • [4] On the height of a random set of points in a d-dimensional unit cube
    Breimer, E
    Goldberg, M
    Kolstad, B
    Magdon-Ismail, M
    EXPERIMENTAL MATHEMATICS, 2001, 10 (04) : 583 - 597
  • [5] Maximal j-simplices in the real d-dimensional unit cube
    Neubauer, MG
    Watkins, W
    Zeitlin, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (01) : 1 - 12
  • [6] Secret sharing on the d-dimensional cube
    Csirmaz, Laszlo
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (03) : 719 - 729
  • [7] RANDOM POLYTOPES IN THE D-DIMENSIONAL CUBE
    FUREDI, Z
    DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) : 315 - 319
  • [8] Secret sharing on the d-dimensional cube
    László Csirmaz
    Designs, Codes and Cryptography, 2015, 74 : 719 - 729
  • [9] On the Linear Separability of Random Points in the d-dimensional Spherical Layer and in the d-dimensional Cube
    Sidorov, S. V.
    Zolotykh, N. Yu.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [10] On the norm of the hyperinterpolation operator on the d-dimensional cube
    Wang, Heping
    Wang, Kai
    Wang, Xiaoli
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (05) : 632 - 638