Non-local dispersal and bistability

被引:37
|
作者
Hutson, V. [1 ]
Grinfeld, M.
机构
[1] Univ Sheffield, Dept Appl Math, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
关键词
D O I
10.1017/S0956792506006462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The scalar initial value problem u(1), = pDu + f(u), is a model for dispersal. Here a represents the density at point x of a compact spatial region Omega epsilon R" and time t, and u(.) is a function of t with values in some function space B. D is a bounded linear operator and f (u) is a bistable nonlinearity for the associated ODE u(1) = f (u). Problems of this type arise in mathematical ecology and materials science where the simple diffusion model with D = Delta is not sufficiently general. The study of the dynamics of the equation presents a difficult problem which crucially differs from the diffusion case in that the semiflow generated is not compactifying. We study the asymptotic behaviour of solutions and ask under what conditions each positive semi-orbit converges to an equilibrium (as in the case D = Delta). We develop a technique for proving that indeed convergence does hold for small p and show by constructing a counter-example that this result does not hold in general for all p.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 50 条
  • [41] A non-local model for a swarm
    Alexander Mogilner
    Leah Edelstein-Keshet
    Journal of Mathematical Biology, 1999, 38 : 534 - 570
  • [42] A non-local model for a swarm
    Mogilner, A
    Edelstein-Keshet, L
    JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (06) : 534 - 570
  • [43] Asymptotics of non-local perimeters
    Cygan, Wojciech
    Grzywny, Tomasz
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2629 - 2651
  • [44] Learning non-local dependencies
    Kuhn, Gustav
    Dienes, Zoltan
    COGNITION, 2008, 106 (01) : 184 - 206
  • [45] On the non-local geometry of turbulence
    Bermejo-Moreno, Ivan
    Pullin, D. I.
    JOURNAL OF FLUID MECHANICS, 2008, 603 (101-135) : 101 - 135
  • [46] NON-LOCAL SPIRANTIZATION IN BRETON
    STUMP, GT
    JOURNAL OF LINGUISTICS, 1988, 24 (02) : 457 - 481
  • [47] NOTE ON THE NON-LOCAL INTERACTION
    SHONO, N
    ODA, N
    PROGRESS OF THEORETICAL PHYSICS, 1952, 8 (01): : 28 - 38
  • [48] Non-local cosmological evolutions
    Sanfrutos Carreras, M.
    Cembranos, J. A. R.
    TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011, 2012, 1458 : 519 - 522
  • [49] Non-local MHD turbulence
    Nazarenko, SV
    Newell, AC
    Galtier, S
    PHYSICA D, 2001, 152 : 646 - 652
  • [50] ODEMethods in Non-Local Equations
    Ao, Weiwei
    Chan, Hardy
    DelaTorre, Azahara
    Fontelos, Marco A.
    Gonzalez, Maria del Mar
    Wei, Juncheng
    JOURNAL OF MATHEMATICAL STUDY, 2020, 53 (04): : 370 - 401