REGULARITY OF DYNAMICAL GREEN'S FUNCTIONS

被引:14
|
作者
Diller, Jeffrey [1 ]
Guedj, Vincent [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Aix Marseille 1, Ctr Math & Informat, F-13453 Marseille 13, France
基金
美国国家科学基金会;
关键词
Complex dynamics; meromorphic maps; pluripotential theory; Green's function; POLYNOMIAL DIFFEOMORPHISMS; BIRATIONAL MAPPINGS; RATIONAL MAPPINGS; ENTROPY; MAPS; CURRENTS; P-2; AUTOMORPHISMS; ITERATION; EXPONENTS;
D O I
10.1090/S0002-9947-09-04740-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For meromorphic maps of complex manifolds, ergodic theory and pluripotential theory are closely related. In nice enough situations, dynamically defined Green's functions give rise to invariant, currents which intersect to yield measures of maximal entropy. 'Nice enough' is often a condition oil the regularity of the Green's function. In this paper we look at a variety of regularity properties that have been considered for dynamical Green's functions. We simplify and extend some known results and prove several others which are new. We also give some examples indicating the limits of what, one can hope to achieve in complex dynamics by relying solely on the regularity of a dynamical Green's function.
引用
收藏
页码:4783 / 4805
页数:23
相关论文
共 50 条
  • [41] Nonlinear Green’s functions in smectics
    E. A. Brener
    V. I. Marchenko
    JETP Letters, 2009, 90 : 143 - 145
  • [42] Uniforms hypoelliptic Green's functions
    Beals, R
    Gaveau, B
    Greiner, P
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (03): : 209 - 248
  • [43] Green’s Functions at Exceptional Points
    W. D. Heiss
    International Journal of Theoretical Physics, 2015, 54 : 3954 - 3959
  • [44] Green's functions in computational aeroacoustics
    Morfey, C. L.
    Powles, C. J.
    Wright, M. C. M.
    INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2011, 10 (2-3) : 117 - 159
  • [45] On Green's Functions for Isotropic Metamaterials
    Fisanov, V. V.
    RUSSIAN PHYSICS JOURNAL, 2023, 66 (06) : 683 - 688
  • [46] On some fractional Green's functions
    Camargo, R. Figueiredo
    Charnet, R.
    de Oliveira, E. Capelas
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [47] Monotone approximations of Green's functions
    Chasseigne, E
    Ferreira, R
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (06) : 395 - 400
  • [48] Harmonic functions and Green's integral
    Kellogg, OD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1912, 13 : 109 - 132
  • [49] Green's Functions at Exceptional Points
    Heiss, W. D.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3954 - 3959
  • [50] Green's functions for Rossby waves
    Kloosterziel, R. C.
    Maas, L. R. M.
    JOURNAL OF FLUID MECHANICS, 2017, 830 : 387 - 407