THE GENERIC STABILITY OF SOLUTIONS FOR VECTOR QUASI-EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS

被引:15
|
作者
Nguyen Van Hung [1 ]
Le Xuan Dai [2 ]
Kobis, Elisabeth [3 ]
Yao, Jen-Chih [4 ]
机构
[1] Posts & Telecommun Inst Technol, Dept Sci Fundamentals, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Technol, Vietnam Natl Univ, Dept Appl Math, Ho Chi Minh City, Vietnam
[3] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, N-7491 Trondheim, Norway
[4] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
来源
关键词
Hadamard manifold; Quasi-variational inclusion; Quasi-equilibrium problem; Generic stability;
D O I
10.23952/jnva.4.2020.3.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first revisit two classes of set-valued vector quasi-equilibrium problems on Hadamard manifolds with established existence conditions of solutions. Then, we establish the generic stability of set-valued mappings whose set of essential points of a map is a dense residual subset of a (Hausdorff) metric space of the set-valued maps. As applications, we study generalized vector quasi-variational-like inequalities and vector quasioptimization problems on Hadamard manifolds.
引用
收藏
页码:427 / 438
页数:12
相关论文
共 50 条