Multiscale based nonlinear dynamics analysis of heart rate variability signals

被引:1
|
作者
Kazmi, Syed Zaki Hassan [1 ]
Habib, Nazneen [2 ]
Riaz, Rabia [1 ]
Rizvi, Sanam Shahla [3 ]
Abbas, Syed Ali [1 ]
Chung, Tae-Sun [4 ]
机构
[1] Univ Azad Jammu & Kashmir, Dept Comp Sci & Informat Technol, Muzaffarabad, Pakistan
[2] Univ Azad Jammu & Kashmir, Dept Sociol & Rural Dev, Muzaffarabad, Pakistan
[3] Raptor Interact Pty Ltd, Centurion, South Africa
[4] Ajou Univ, Dept Software, Suwon, South Korea
来源
PLOS ONE | 2020年 / 15卷 / 12期
基金
新加坡国家研究基金会;
关键词
TIME-SERIES; ENTROPY; HEALTHY; INDEX;
D O I
10.1371/journal.pone.0243441
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acceleration change index (ACI) is a fast and easy to understand heart rate variability (HRV) analysis approach used for assessing cardiac autonomic control of the nervous systems. The cardiac autonomic control of the nervous system is an example of highly integrated systems operating at multiple time scales. Traditional single scale based ACI did not take into account multiple time scales and has limited capability to classify normal and pathological subjects. In this study, a novel approach multiscale ACI (MACI) is proposed by incorporating multiple time scales for improving the classification ability of ACI. We evaluated the performance of MACI for classifying, normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation subjects. The findings reveal that MACI provided better classification between healthy and pathological subjects compared to ACI. We also compared MACI with other scale-based techniques such as multiscale entropy, multiscale permutation entropy (MPE), multiscale normalized corrected Shannon entropy (MNCSE) and multiscale permutation entropy (IMPE). The preliminary results show that MACI values are more stable and reliable than IMPE and MNCSE. The results show that MACI based features lead to higher classification accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A Software Toolkit for Nonlinear Heart Rate Variability Analysis
    Garcia, Constantino A.
    Otero, Abraham
    Presedo, Jesus
    Vila, Xose
    Felix, Paulo
    2013 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2013, 40 : 393 - 396
  • [42] System to ECG Signals Variability Analysis: Heart Rate Variability and QT Interval Variability
    Petry, D.
    Palodeto, V.
    Suzuki, D. O. H.
    Marques, J. L. B.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 1160 - +
  • [43] Analysis of Heart Rate Variability by Multiscale Entropy in Spontaneously Hypertensive Rats
    Silva, Luiz Eduardo Virgilio
    Silva, Carlos Alberto Aguiar
    Salgado, Hello Cesar
    Fazan, Rubens, Jr.
    FASEB JOURNAL, 2016, 30
  • [44] Multiscale Analysis of Heart Rate Variability: A Comparison of Different Complexity Measures
    Hu, Jing
    Gao, Jianbo
    Tung, Wen-wen
    Cao, Yinhe
    ANNALS OF BIOMEDICAL ENGINEERING, 2010, 38 (03) : 854 - 864
  • [45] Multiscale Analysis of Heart Rate Variability: A Comparison of Different Complexity Measures
    Jing Hu
    Jianbo Gao
    Wen-wen Tung
    Yinhe Cao
    Annals of Biomedical Engineering, 2010, 38 : 854 - 864
  • [46] Multiscale analysis of heart rate variability in non-stationary environments
    Gao, Jianbo
    Gurbaxani, Brian M.
    Hu, Jing
    Heilman, Keri J.
    Emanuele, Vincent A., II
    Lewis, Greg F.
    Davila, Maria
    Unger, Elizabeth R.
    Lin, Jin-Mann S.
    FRONTIERS IN PHYSIOLOGY, 2013, 4
  • [47] Multiscale base-scale entropy analysis of heart rate variability
    Huang Xiao-Lin
    Cui Sheng-Zhong
    Ning Xin-Bao
    Bian Chun-Hua
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8160 - 8165
  • [48] The analysis of heart rate variability using independent component signals
    Teixeira, AR
    Rocha, AP
    Almeida, R
    PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2004, : 240 - 243
  • [49] Heart Rate Variability Estimation in Electrocardiogram Signals Interferences Based on Photoplethysmography Signals
    Zhang, Aihua
    Wang, Qian
    Chou, Yongxin
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2016, PT III, 2016, 9773 : 149 - 159
  • [50] NONLINEAR DYNAMICS OF CARDIOVASCULAR VARIABILITY SIGNALS
    SIGNORINI, MG
    CERUTTI, S
    GUZZETTI, S
    PAROLA, R
    METHODS OF INFORMATION IN MEDICINE, 1994, 33 (01) : 81 - 84