Multipole expansion of integral powers of cosine theta

被引:4
|
作者
Jobunga, E. O. [1 ]
Okeyo, O. S. [2 ]
机构
[1] Tech Univ Mombasa, Dept Math & Phys, POB 90420-80100, Mombasa, Kenya
[2] Maseno Univ, Dept Phys & Mat Sci, Private Bag 40105, Maseno, Kenya
关键词
D O I
10.1038/s41598-020-77234-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Legendre polynomials form the basis for multipole expansion of spatially varying functions. The technique allows for decomposition of the function into two separate parts with one depending on the radial coordinates only and the other depending on the angular variables. In this work, the angular function cosk theta is expanded in the Legendre polynomial basis and the algorithm for determining the corresponding coefficients of the Legendre polynomials is generated. This expansion together with the algorithm can be generalized to any case in which a dot product of any two vectors appears. Two alternative multipole expansions for the electron-electron Coulomb repulsion term are obtained. It is shown that the conventional multipole expansion of the Coulomb repulsion term is a special case for one of the expansions generated in this work.
引用
收藏
页数:6
相关论文
共 50 条