LASSO-type variable selection methods for high-dimensional data

被引:1
|
作者
Fu, Guanghui [1 ]
Wang, Pan [1 ]
机构
[1] Kunming Univ Sci & Technol, Coll Sci, Kunming 650500, Peoples R China
来源
ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2 | 2014年 / 444-445卷
关键词
LASSO; Variable selection; High-dimensional data; Oracle property; Group effect; ORACLE PROPERTIES; ELASTIC-NET; REGRESSION; SHRINKAGE;
D O I
10.4028/www.scientific.net/AMM.0.604
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
LASSO is a very useful variable selection method for high-dimensional data, But it does not possess oracle property[Fan and Li, 2001] and group effect[Zou and Hastie, 2005]. In this paper, we firstly review four improved LASSO-type methods which satisfy oracle property and(or) group effect, and then give another two new ones called WFEN and WFAEN. The performance on both the simulation and real data sets shows that WFEN and WFAEN are competitive with other LASSO-type methods.
引用
收藏
页码:604 / 609
页数:6
相关论文
共 50 条
  • [21] Bayesian variable selection for high-dimensional rank data
    Cui, Can
    Singh, Susheela P.
    Staicu, Ana-Maria
    Reich, Brian J.
    ENVIRONMETRICS, 2021, 32 (07)
  • [22] VARIABLE SELECTION AND PREDICTION WITH INCOMPLETE HIGH-DIMENSIONAL DATA
    Liu, Ying
    Wang, Yuanjia
    Feng, Yang
    Wall, Melanie M.
    ANNALS OF APPLIED STATISTICS, 2016, 10 (01): : 418 - 450
  • [23] A Variable Selection Method for High-Dimensional Survival Data
    Giordano, Francesco
    Milito, Sara
    Restaino, Marialuisa
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 303 - 308
  • [24] HIGH-DIMENSIONAL VARIABLE SELECTION
    Wasserman, Larry
    Roeder, Kathryn
    ANNALS OF STATISTICS, 2009, 37 (5A): : 2178 - 2201
  • [25] Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings
    Gilhodes, Julia
    Dalenc, Florence
    Gal, Jocelyn
    Zemmour, Christophe
    Leconte, Eve
    Boher, Jean-Marie
    Filleron, Thomas
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [26] Variable Selection Methods in High-dimensional RegressionA Simulation Study
    Shahriari, Shirin
    Faria, Susana
    Goncalves, A. Manuela
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (10) : 2548 - 2561
  • [27] On the scalability of feature selection methods on high-dimensional data
    V. Bolón-Canedo
    D. Rego-Fernández
    D. Peteiro-Barral
    A. Alonso-Betanzos
    B. Guijarro-Berdiñas
    N. Sánchez-Maroño
    Knowledge and Information Systems, 2018, 56 : 395 - 442
  • [28] A study on tuning parameter selection for the high-dimensional lasso
    Homrighausen, Darren
    McDonald, Daniel J.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (15) : 2865 - 2892
  • [29] On the scalability of feature selection methods on high-dimensional data
    Bolon-Canedo, V.
    Rego-Fernandez, D.
    Peteiro-Barral, D.
    Alonso-Betanzos, A.
    Guijarro-Berdinas, B.
    Sanchez-Marono, N.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 56 (02) : 395 - 442
  • [30] Bayesian Variable Selection in Clustering High-Dimensional Data With Substructure
    Swartz, Michael D.
    Mo, Qianxing
    Murphy, Mary E.
    Lupton, Joanne R.
    Turner, Nancy D.
    Hong, Mee Young
    Vannucci, Marina
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2008, 13 (04) : 407 - 423