LOW-LYING ZEROS OF L-FUNCTIONS FOR MAASS FORMS OVER IMAGINARY QUADRATIC FIELDS

被引:4
|
作者
Liu, Sheng-Chi [1 ]
Qi, Zhi [2 ]
机构
[1] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
关键词
11M50; (primary); FAMILIES; GL(3);
D O I
10.1112/mtk.12041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the 1- or 2-level density of families of L-functions for Hecke-Maass forms over an imaginary quadratic field F. For test functions whose Fourier transform is supported in (-<mml:mfrac>32</mml:mfrac>,<mml:mfrac>32</mml:mfrac>), we prove that the 1-level density for Hecke-Maass forms over F of square-free level q, as N(q) tends to infinity, agrees with that of the orthogonal random matrix ensembles. For Hecke-Maass forms over F of full level, we prove similar statements for the 1- and 2-level densities, as the Laplace eigenvalues tend to infinity.
引用
收藏
页码:777 / 805
页数:29
相关论文
共 50 条
  • [31] Low-lying Zeros of Quadratic Dirichlet L-Functions, Hyper-elliptic Curves and Random Matrix Theory
    Alexei Entin
    Edva Roditty-Gershon
    Zeév Rudnick
    Geometric and Functional Analysis, 2013, 23 : 1230 - 1261
  • [32] Statistics for low-lying zeros of symmetric power L-functions in the level aspect
    Ricotta, Guillaume
    Royer, Emmanuel
    FORUM MATHEMATICUM, 2011, 23 (05) : 969 - 1028
  • [33] LOW LYING ZEROS OF FAMILIES OF L-FUNCTIONS
    Iwaniec, Henryk
    Luo, Wenzhi
    Sarnak, Peter
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2000, (91): : 55 - 131
  • [34] Low lying zeros of families of L-functions
    Henryk Iwaniec
    Wenzhi Luo
    Peter Sarnak
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2000, 91 (1): : 55 - 131
  • [35] Low-lying zeros of elliptic curve L-functions: Beyond the Ratios Conjecture
    Fiorilli, Daniel
    Parks, James
    Sodergren, Anders
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (02) : 315 - 351
  • [36] SIMPLE ZEROS OF MAASS L-FUNCTIONS
    Cho, Peter Jaehyun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (01) : 167 - 178
  • [37] Zeros of a special type of function associated with Hecke L-functions of imaginary quadratic fields
    Gritsenko, SA
    IZVESTIYA MATHEMATICS, 1997, 61 (01) : 45 - 68
  • [38] On the distribution of the nontrivial zeros of quadratic L-functions of imaginary quadratic number fields close to the real axis
    Ozluk, A. E.
    Snyder, C.
    ACTA ARITHMETICA, 2006, 124 (03) : 205 - 233
  • [39] Sato-Tate theorem for families and low-lying zeros of automorphic L-functions
    Shin, Sug Woo
    Templier, Nicolas
    INVENTIONES MATHEMATICAE, 2016, 203 (01) : 1 - 177
  • [40] n-level density of the low-lying zeros of primitive Dirichlet L-functions
    Chandee, Vorrapan
    Lee, Yoonbok
    ADVANCES IN MATHEMATICS, 2020, 369