Histone deacetylase 4 mediates high glucose-induced podocyte apoptosis via upregulation of calcineurin

被引:14
|
作者
Shi, Wanxin [1 ,2 ]
Huang, Ying [1 ,2 ]
Zhao, Xingchen [2 ]
Xie, Zhiyong [1 ,2 ]
Dong, Wei [2 ]
Li, Ruizhao [2 ]
Chen, Yuanhan [2 ]
Li, Zhuo [2 ]
Wang, Wenjian [2 ]
Ye, Zhiming [2 ]
Liu, Shuangxin [2 ]
Zhang, Li [2 ]
Liang, Xinling [1 ,2 ]
机构
[1] Southern Med Univ, Sch Clin Med 2, Guangzhou 510515, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Nephrol, 106 Zhongshan 2 Rd, Guangzhou 510080, Peoples R China
基金
中国国家自然科学基金;
关键词
Diabetic nephropathy; High glucose; Podocyte apoptosis; Histone deacetylase 4; Calcineurin; INJURY; INHIBITION; PROTECTS;
D O I
10.1016/j.bbrc.2020.09.121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hyperglycemia promotes podocyte apoptosis and plays an important role in the pathogenesis of diabetic nephropathy (DN). Calcium/calcineurin (CaN) signaling is critical for podocyte apoptosis. Therefore, it is essential to elucidate the mechanisms underlying the regulation of CaN signaling. Recent studies reported that histone deacetylase 4 (HDAC4) is involved in podocyte apoptosis in DN. The aim of this study was to determine whether HDAC4 mediates the regulation of CaN and to elucidate the function of HDAC4 in high glucose (HG)-induced podocyte apoptosis. First, we identified the expression of HDAC4 was upregulated in podocytes of patients with DN. In vitro, the results also indicate that the mRNA and protein expression levels of HDAC4 were increased in HG-cultured podocytes. Silencing and over expression of HDAC4 markedly decreased and increased CaN expression, respectively. Meanwhile, HG induced podocyte apoptosis was abrogated by HDAC4-knockdown with subsequent decreased Bax expression and increased Bcl-2 expression. In contrast, overexpression of HDAC4 increased podocyte apoptosis and Bax expression, as well as decreased Bcl-2 expression. In addition, podocyte apoptosis induced by HDAC4 overexpression was effectively rescued by FK506, a pharmacological inhibitor of CaN, which was accompanied by decreased Bax and increased Bcl-2 expression. As a novel finding, HG induced podocyte apoptosis is mediated by the HDAC4/CaN signaling pathway, which presents a promising target for therapeutic intervention in DN. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1061 / 1068
页数:8
相关论文
共 50 条
  • [31] Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes
    Lee, Wooje
    Lee, Sang Yeol
    Son, Young-Jin
    Yun, Jung-Mi
    JOURNAL OF MEDICINAL FOOD, 2015, 18 (07) : 793 - 801
  • [32] Astragaloside IV, a Novel Antioxidant, Prevents Glucose-Induced Podocyte Apoptosis In Vitro and In Vivo
    Gui, Dingkun
    Guo, Yongping
    Wang, Feng
    Liu, Wei
    Chen, Jianguo
    Chen, Yifang
    Huang, Jianhua
    Wang, Niansong
    PLOS ONE, 2012, 7 (06):
  • [33] Ursolic acid regulates high glucose-induced apoptosis
    Oh, Chang Joo
    Kil, In Sup
    Park, Chan Ik
    Yang, Chae Ha
    Park, Jeen-Woo
    FREE RADICAL RESEARCH, 2007, 41 (06) : 638 - 644
  • [34] CXXC4 mediates glucose-induced β-cell proliferation
    Guan, Binbin
    Zhan, Zhidong
    Wang, Lijing
    Wang, Linxi
    Liu, Libin
    ACTA DIABETOLOGICA, 2020, 57 (09) : 1101 - 1109
  • [35] CXXC4 mediates glucose-induced β-cell proliferation
    Binbin Guan
    Zhidong Zhan
    Lijing Wang
    Linxi Wang
    Libin Liu
    Acta Diabetologica, 2020, 57 : 1101 - 1109
  • [36] Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway
    Li, Chao
    Guan, Xi-Mei
    Wang, Rui-Yao
    Xie, Yong-Sheng
    Zhou, Hong
    Ni, Wei-Jian
    Tang, Li-Qin
    LIFE SCIENCES, 2020, 243
  • [37] KIM-1 Mediates High Glucose-Induced Autophagy and Apoptosis in Renal Tubular Epithelial Cells
    Gou, Rong
    Chen, Juntong
    Sheng, Shifeng
    Wang, Ruiqiang
    Fang, Yudong
    Yang, Zijun
    Wang, Liuwei
    Tang, Lin
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 38 (06) : 2479 - 2488
  • [38] MicroRNA-134-5p promotes high glucose-induced podocyte apoptosis by targeting bcl-2
    Qian, Xiaoxiao
    Tan, Juan
    Liu, Ling
    Chen, Sheng
    You, Na
    Yong, Huijuan
    Pan, Minglin
    You, Qiang
    Ding, Dafa
    Lu, Yibing
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (03): : 989 - 997
  • [39] Effects of hydrogen sulfide on high glucose-induced glomerular podocyte injury in mice
    Liu, Ye
    Zhao, Huichen
    Qiang, Ye
    Qian, Guanfang
    Lu, Shengxia
    Chen, Jicui
    Wang, Xiangdong
    Guan, Qingbo
    Liu, Yuantao
    Fu, Yuqin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (06): : 6814 - 6820
  • [40] Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway
    Yu, Qian
    Zhang, Minda
    Qian, Lifen
    Wen, Dan
    Wu, Guanzhong
    LIFE SCIENCES, 2019, 225 : 1 - 7