Asymptotic controllability implies feedback stabilization

被引:411
|
作者
Clarke, FH
Ledyaev, YS
Sontag, ED
Subbotin, AI
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL,PQ H3C 3J7,CANADA
[2] VA STEKLOV MATH INST,MOSCOW 117966,RUSSIA
[3] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
[4] INST MATH & MECH,EKATERINBURG 620219,RUSSIA
基金
加拿大自然科学与工程研究理事会;
关键词
control-Lyapunov functions; feedback; nonsmooth analysis; stabilization;
D O I
10.1109/9.633828
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown that every asymptotically controllable system can be globally stabilized by means of some (discontinuous) feedback law. The stabilizing strategy is based on pointwise optimization of a smoothed version of a control-lyapunov function, iteratively sending trajectories into smaller and smaller neighborhoods of a desired equilibrium. A major technical problem, and one of the contributions of the present paper, concerns the precise meaning of ''solution'' when using a discontinuous controller.
引用
收藏
页码:1394 / 1407
页数:14
相关论文
共 50 条