Analysis of Abel-type nonlinear integral equations with weakly singular kernels

被引:9
|
作者
Wang, JinRong [1 ,2 ]
Zhu, Chun [2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Guizhou Normal Coll, Sch Math & Comp Sci, Guiyang 550018, Guizhou, Peoples R China
[2] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[3] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[4] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
来源
基金
中国国家自然科学基金;
关键词
Abel-type nonlinear integral equations; weakly singular kernels; existence; numerical solutions; LOCAL ATTRACTIVITY; FRACTIONAL ORDER; EXISTENCE;
D O I
10.1186/1687-2770-2014-20
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate Abel-type nonlinear integral equations with weakly singular kernels. Existence and uniqueness of nontrivial solution are presented in an order interval of a cone by using fixed point methods. As a byproduct of our method, we improve a gap in the proof of Theorem 5 in Buckwar (Nonlinear Anal. TMA 63: 88-96, 2005). As an extension, solutions in closed form of some Erdelyi-Kober-type fractional integral equations are given. Finally theoretical results with three illustrative examples are presented.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] On the numerical solution of integral equations of the second kind with weakly singular kernels
    Fahmy, M.H.
    Abdou, M.A.
    Darwish, M.A.
    Journal of Applied Mathematics and Computing, 1999, 6 (02): : 401 - 409
  • [32] Multistep Collocation Methods for Volterra Integral Equations with Weakly Singular Kernels
    Zhao, Jingjun
    Long, Teng
    Xu, Yang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (01) : 67 - 86
  • [33] Numerical methods for stochastic Volterra integral equations with weakly singular kernels
    Li, Min
    Huang, Chengming
    Hu, Yaozhong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) : 2656 - 2683
  • [34] The Product Midpoint Rule for Abel-Type Integral Equations of the First Kind with Perturbed Data
    Plato, Robert
    NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS, 2018, : 195 - 225
  • [35] THE GENERALIZED EULER-MACLAURIN FORMULA FOR THE NUMERICAL SOLUTION OF ABEL-TYPE INTEGRAL EQUATIONS
    Tausch, Johannes
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2010, 22 (01) : 115 - 140
  • [36] A Fractional Spectral Collocation for Solving Second Kind Nonlinear Volterra Integral Equations with Weakly Singular Kernels
    Cai, Haotao
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1529 - 1548
  • [37] A Fractional Spectral Collocation for Solving Second Kind Nonlinear Volterra Integral Equations with Weakly Singular Kernels
    Haotao Cai
    Journal of Scientific Computing, 2019, 80 : 1529 - 1548
  • [38] Generalized Jacobi Spectral-Galerkin Method for Nonlinear Volterra Integral Equations with Weakly Singular Kernels
    Shen, Jie
    Sheng, Changtao
    Wang, Zhongqing
    JOURNAL OF MATHEMATICAL STUDY, 2015, 48 (04): : 315 - 329
  • [39] Efficient algorithms to solve singular integral equations of Abel type
    Pandey, Rajesh K.
    Singh, Om P.
    Singh, Vineet K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (04) : 664 - 676
  • [40] An analytical method for solving singular integral equations of Abel type
    Singh, Koushlendra K.
    Pandey, Rajesh K.
    Mandal, B. N.
    Dubey, Nikita
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 2726 - 2738