Polybenzoxazine originated N-doped mesoporous carbon ropes as an electrode material for high-performance supercapacitors

被引:57
|
作者
Thirukumaran, Periyasamy [1 ]
Atchudan, Raji [1 ]
Parveen, Asrafali Shakila [2 ]
Lee, Yong Rok [1 ]
Kim, Seong-Cheol [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
[2] Anna Univ, Dept Chem, Chennai 600025, Tamil Nadu, India
关键词
Polybenzoxazine; Carbonization; N-doped mesoporous carbon rope; Supercapacitor; POROUS CARBON; WATER-TREATMENT; ENERGY-STORAGE; AEROGELS; FORMALDEHYDE; RESORCINOL; SHEETS; OXIDE; DOTS; NANOCOMPOSITE;
D O I
10.1016/j.jallcom.2018.04.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, N-doped mesoporous carbon ropes (N-MCRs), derived from polybenzoxazine, a new high-performance thermosetting resin, used as an electrode active material for supercapacitor application. Nitrogen-containing tetraethylenepentamine and eugenol were used to synthesize polybenzoxazine. The structure of the monomer was supported by Fourier transform infrared (FT-IR) and H-1 NMR spectroscopy. The morphology and surface properties of the synthesized N-MCRs were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N-2 adsorption-desorption study and X-ray photoelectron spectroscopy (XPS). It was found that the reactant ratio of nitrogen-rich polybenzoxazine plays an important role in the improvement of electrochemical behavior. The BET surface area of N-MCRs was found to be 300 m(2) g(-1). Electrochemical performance proposes a high nitrogen content of 12.38 mol % with optimum nitrogen-containing benzoxazine derived carbon backgrounds. It showed a specific capacitance of the 60 F g(-1) in 2 M KOH aqueous electrolyte at a current density of 1 A g(-1). A remarkable improvement in the electrochemical behavior was obtained by modifying the surface chemistry as well as the electrical conductivity of the carbon. The presence of porous carbon with intrinsic nitrogen-containing groups makes them more useful as high-performance supercapacitor. Overall, this simple approach exhibits great potential for carbon-based high-performance supercapacitor application. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:384 / 391
页数:8
相关论文
共 50 条
  • [41] N and S co-doped 3D hierarchical porous carbon as high-performance electrode material for supercapacitors
    Ning, Ke
    Zhao, Guangzhen
    Liu, Hanxiao
    Hu, Mingzhu
    Huang, Fei
    Li, Hengzheng
    Zhang, Li
    Zhu, Guang
    Wang, Hongyan
    Shi, Junyou
    Diamond and Related Materials, 2022, 126
  • [42] N and S co-doped 3D hierarchical porous carbon as high-performance electrode material for supercapacitors
    Ning, Ke
    Zhao, Guangzhen
    Liu, Hanxiao
    Hu, Mingzhu
    Huang, Fei
    Li, Hengzheng
    Zhang, Li
    Zhu, Guang
    Wang, Hongyan
    Shi, Junyou
    DIAMOND AND RELATED MATERIALS, 2022, 126
  • [43] Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors
    Sankar, S.
    Ahmed, Abu Talha Aqueel
    Inamdar, Akbar I.
    Im, Hyunsik
    Bin Im, Young
    Lee, Youngmin
    Kim, Deuk Young
    Lee, Sejoon
    MATERIALS & DESIGN, 2019, 169
  • [44] Negative electrode materials of molybdenum nitride/N-doped carbon nano-fiber via electrospinning method for high-performance supercapacitors
    Tan, Yongtao
    Meng, Lei
    Wang, Yanqin
    Dong, Wenju
    Kong, Lingbin
    Kang, Long
    Ran, Fen
    ELECTROCHIMICA ACTA, 2018, 277 : 41 - 49
  • [45] Construction of N-Doped Hollow Carbon Nanospheres Through a Novel Self-Template Strategy as High-Performance Electrode Materials for Supercapacitors
    Zhao, Xiang
    Zhang, Mu
    Pan, Wei
    Yang, Rui
    Sun, Xu-Dong
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (08) : 1189 - 1198
  • [46] N-Doped Mesoporous Carbon Sheets/Hollow Carbon Spheres Composite for Supercapacitors
    Zhang, Lili
    Liu, Lei
    Hu, Xiaolin
    Yu, Yifeng
    Lv, Haijun
    Chen, Aibing
    LANGMUIR, 2018, 34 (51) : 15665 - 15673
  • [47] Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors
    Wang, Ying-Ying
    Hou, Bao-Hua
    Lu, Hong-Yan
    Lu, Chang-Li
    Wu, Xing-Long
    CHEMISTRYSELECT, 2016, 1 (07): : 1441 - 1446
  • [48] N-doped interconnected porous graphene as advanced electrode material for supercapacitors
    Li, Pan
    Wang, Wanyi
    Su, Fengyun
    Wang, Xiaoying
    Zhang, Xiaoli
    Zheng, Xiucheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 893
  • [49] A high-performance supercapacitor electrode based on N-doped porous graphene
    Dai, Shuge
    Liu, Zhen
    Zhao, Bote
    Zeng, Jianhuang
    Hu, Hao
    Zhang, Qiaobao
    Chen, Dongchang
    Qu, Chong
    Dang, Dai
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2018, 387 : 43 - 48
  • [50] CoMoO4 Supported by N-doped Carbon Derived from ZIF-67 as a Novel Electrode Material for High Performance Supercapacitors
    Li, Hengzheng
    Li, Yanjiang
    Zhao, Guangzhen
    Liu, Conghu
    Li, Li
    Zhu, Guang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (10): : 10276 - 10288