A Baues fibration category of P-spaces

被引:0
|
作者
Khalil, Assakta [1 ]
Bin Ahmad, Abd Ghafur [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Selangor Darul, Malaysia
关键词
Polish spaces; Homotopy theory; Fibration; Model category; TOPOLOGICAL SPACES; ISOTOPY PROPERTIES; HOMOTOPY;
D O I
10.1016/j.jksus.2016.11.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The article is concerned with homotopy in the category P whose objects are the pairs (X, *) consisting of a Polish space X and a closed binary operation *. Homomorphisms in P are continuous maps compatible with the operations. The result showed that the category P admits the structure of a fibration category in the sense of H. Baues. The notions of fibration and weak equivalence are defined in the category P and showed to satisfy fundamental properties that the corresponding notions satisfy in the category Top of topological spaces. (C) 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [31] DEVELOPABLE SPACES AND P-SPACES . PRELIMINARY REPORT
    KULLMAN, DE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (02): : 431 - &
  • [32] PRODUCT OF F-SPACES WITH P-SPACES
    HINDMAN, N
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 47 (02) : 473 - 480
  • [33] Scattered P-spaces of weight ω1
    Bielas, Wojciech
    Kucharski, Andrzej
    Plewik, Szymon
    TOPOLOGY AND ITS APPLICATIONS, 2023, 334
  • [34] Boundedness of Paracommutators on L~p-spaces
    李春
    Acta Mathematica Sinica,English Series, 1990, (02) : 131 - 147
  • [35] ON QUASI P-SPACES AND THEIR APPLICATIONS IN SUBMAXIMAL AND NODEC SPACES
    Aliabad, A. R.
    Bagheri, V.
    Jahromi, M. Karavan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03) : 835 - 852
  • [36] Constructions of Lindelof scattered P-spaces
    Martinez, Juan Carlos
    Soukup, Lajos
    FUNDAMENTA MATHEMATICAE, 2022, : 271 - 286
  • [37] LINDELOF P-SPACES NEED NOT BE SOKOLOV
    Tkachuk, Vladimir V.
    MATHEMATICA SLOVACA, 2017, 67 (01) : 227 - 234
  • [38] Inverse limits which are P-spaces
    Bielas, Wojciech
    Kucharski, Andrzej
    Plewik, Szymon
    TOPOLOGY AND ITS APPLICATIONS, 2022, 312
  • [39] On convolution in weighted DL p-spaces
    Wagner, Peter
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (04) : 472 - 477
  • [40] FUNCTIONAL CHARACTERIZATIONS OF CERTAIN P-SPACES
    BURKE, D
    LUTZER, D
    LEVI, S
    TOPOLOGY AND ITS APPLICATIONS, 1985, 20 (02) : 161 - 165