Extensive statistical mechanics based on nonadditive entropy: Canonical ensemble

被引:24
|
作者
Parvan, A. S. [1 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Moldavian Acad Sci, Inst Appl Phys, MD-2028 Kishinev, Moldova
关键词
Tsallis thermostatistics; canonical ensemble; equilibrium thermodynamics;
D O I
10.1016/j.physleta.2006.07.052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The original canonical ensemble formalism for the nonextensive entropy thermostatistics is reconsidered. It is shown that the unambiguous connection of the statistical mechanics with the equilibrium thermodynamics is provided if the entropic parameter 1/(q-1) is an extensive variable of the state. Based on a particular example of the perfect gas, it is proved that the Tsallis then nostatistics meets all the requirements of equilibrium thermodynamics in the thermodynamic limit. In particular, the entropy of the system is extensive and the temperature is intensive. However, for finite systems both the Tsallis and Boltzmann-Gibbs entropies are nonextensive. The equivalence of the canonical and microcanonical ensembles of Tsallis thermostatistics in the thermodynamic limit is established. The issue associated with physical interpretation of the entropic variable is discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 34
页数:9
相关论文
共 50 条
  • [31] Negative specific heat in the canonical statistical ensemble
    Staniscia, F.
    Turchi, A.
    Fanelli, D.
    Chavanis, P. H.
    De Ninno, G.
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 297 - 297
  • [32] Statistical mechanics of a collisionless system based on the maximum entropy principle
    Nakamura, TK
    ASTROPHYSICAL JOURNAL, 2000, 531 (02): : 739 - 743
  • [33] Negative Specific Heat in the Canonical Statistical Ensemble
    Staniscia, F.
    Turchi, A.
    Fanelli, D.
    Chavanis, P. H.
    De Ninno, G.
    PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [34] CANONICAL PERTURBATION THEORY IN STATISTICAL MECHANICS.
    Pavlenko, Yu.G.
    1600, (29):
  • [35] CANONICAL STATES IN QUANTUM-STATISTICAL MECHANICS
    KVARDA, RE
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) : 2208 - &
  • [36] CANONICAL THEORY OF PERTURBATIONS IN STATISTICAL-MECHANICS
    PAVLENKO, YG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1986, 29 (07): : 87 - 93
  • [37] ON THE GRAND CANONICAL DISTRIBUTION METHOD OF STATISTICAL MECHANICS
    YAMAMOTO, T
    MATSUDA, H
    PROGRESS OF THEORETICAL PHYSICS, 1956, 16 (04): : 269 - 286
  • [38] Black hole entropy corrections in the grand canonical ensemble
    Mahapatra, Subhash
    Phukon, Prabwal
    Sarkar, Tapobrata
    PHYSICAL REVIEW D, 2011, 84 (04):
  • [39] Entropy and canonical ensemble of hybrid quantum classical systems
    Alonso, J. L.
    Bouthelier, C.
    Castro, A.
    Clemente-Gallardo, J.
    Jover-Galtier, J. A.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [40] Entropy Production in Nonequilibrium Statistical Mechanics
    David Ruelle
    Communications in Mathematical Physics, 1997, 189 : 365 - 371