Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

被引:290
|
作者
Frolking, S. [1 ]
Palace, M. W. [1 ,5 ]
Clark, D. B. [2 ,6 ]
Chambers, J. Q. [3 ]
Shugart, H. H. [4 ]
Hurtt, G. C. [1 ]
机构
[1] Univ New Hampshire, Inst Study Earth Oceans & Space, Complex Syst Res Ctr, Durham, NH 03824 USA
[2] Univ Missouri, Dept Biol, St Louis, MO 63121 USA
[3] Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA
[4] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
[5] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England
[6] La Selva Biol Stn, Puerto Viejo de Sarapiqui, Costa Rica
基金
美国国家科学基金会;
关键词
TROPICAL RAIN-FOREST; NET PRIMARY PRODUCTION; SNOW AVALANCHE DISTURBANCE; RESOLUTION SATELLITE DATA; SURFACE SOIL-MOISTURE; COARSE WOODY DEBRIS; LANDSAT TM DATA; BOREAL FOREST; BURN SEVERITY; CARBON-CYCLE;
D O I
10.1029/2008JG000911
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Abrupt forest disturbances generating gaps >0.001 km(2) impact roughly 0.4-0.7 million km(2) a(-1). Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon c ycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e. g., similar to 1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e. g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth's forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Combining Kriging Interpolation to Improve the Accuracy of Forest Aboveground Biomass Estimation Using Remote Sensing Data
    Li, Yingchang
    Li, Mingyang
    Liu, Zhenzhen
    Li, Chao
    IEEE ACCESS, 2020, 8 : 128124 - 128139
  • [42] Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data
    Goita, Kalifa
    Mouloungou, Jacques
    Benie, Goze Bertin
    GEOCARTO INTERNATIONAL, 2019, 34 (03) : 243 - 259
  • [43] Modelling aboveground biomass in forest remnants of the Brazilian Atlantic Forest using remote sensing, environmental and terrain-related data
    de Oliveira Silveira, Eduarda Martiniano
    Ferraz Cunha, Luiza Imbroisi
    Galvao, Lenio Soares
    Withey, Kieran Daniel
    Acerbi Junior, Fausto Weimar
    Soares Scolforo, Jose Roberto
    GEOCARTO INTERNATIONAL, 2021, 36 (03) : 281 - 298
  • [44] Remote sensing estimation of forest aboveground biomass in Potatso National Park using GF-1 images
    Zhou J.
    Wang Z.
    Liao S.
    Wu W.
    Li L.
    Liu W.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (04): : 216 - 223
  • [45] Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data
    Pontes-Lopes, Aline
    Dalagnol, Ricardo
    Dutra, Andeise Cerqueira
    de Jesus Silva, Camila Valeria
    Lima de Alencastro Graca, Paulo Mauricio
    de Oliveira E Cruz de Aragao, Luiz Eduardo
    REMOTE SENSING, 2022, 14 (07)
  • [46] Plot-level aboveground woody biomass modeling using canopy height and auxiliary remote sensing data in a heterogeneous savanna
    Gwenzi, David
    Lefsky, Michael Andrew
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [47] Plot-level aboveground woody biomass modeling using canopy height and auxiliary remote sensing data in a heterogeneous savanna
    Gwenzi, David
    Lefsky, Michael Andrew
    Journal of Applied Remote Sensing, 2016, 10 (01):
  • [48] Cover density recovery after fire disturbance controls landscape aboveground biomass carbon in the boreal forest of eastern Canada
    Vijayakumar, Dinesh Babu Irulappa Pillai
    Raulier, Frederic
    Bernier, Pierre
    Pare, David
    Gauthier, Sylvie
    Bergeron, Yves
    Pothier, David
    FOREST ECOLOGY AND MANAGEMENT, 2016, 360 : 170 - 180
  • [49] Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence
    Neves d'Oliveira, Marcus Vinicio
    Figueiredo, Evandro Orfano
    Alves de Almeida, Danilo Roberti
    Oliveira, Luis Claudio
    Silva, Carlos Alberto
    Nelson, Bruce Walker
    da Cunha, Renato Mesquita
    Papa, Daniel de Almeida
    Stark, Scott C.
    Valbuena, Ruben
    FOREST ECOLOGY AND MANAGEMENT, 2021, 500
  • [50] Incorporating of spatial effects in forest canopy height mapping using airborne, spaceborne lidar and spatial continuous remote sensing data
    Min, Wankun
    Chen, Yumin
    Huang, Wenli
    Wilson, John P.
    Tang, Hao
    Guo, Meiyu
    Xu, Rui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 133