Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide

被引:10
|
作者
Szutkowska, M. [1 ]
Boniecki, M. [2 ]
Cygan, S. [1 ]
Kalinka, A. [1 ]
Grilli, M. L. [3 ]
Balos, S. [4 ]
机构
[1] Inst Adv Mfg Technol, Krakow, Poland
[2] Inst Elect Mat Technol, Warsaw, Poland
[3] ENEA Energy Technol Dept, Rome, Italy
[4] Fac Tech Sci, Novi Sad, Serbia
关键词
Hardmetals; sintering HIP; fracture toughness; Palmqvist cracks; titanium carbide;
D O I
10.1088/1757-899X/329/1/012015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The addition of various amounts of TiC0.9 phase in the range from 5wt.% to 20wt.% substituting WC phase was applied in WC-Co hardmetals with 9.5 wt.% bonding cobalt phase. The hardmetals were consolidated using Hot Isostatic Pressing (HIP) method at temperature of 1573K and pressure of 1500 atm. The plain strain fracture toughness has been determined from 3PB test on a pre-cracking single edge notched beam (SENB) specimen. The indentation fracture toughness with Vickers cracks for comparison was also measured, which changed from 12 to 9.0 MPa.m(1/2). The amount of the TiC0.9 phase affected the mechanical and physical properties: Vickers hardness from 12.5 to 14.0 GPa, Young's modulus from 550 to 460 GPa, density from 13.1 to 9.6 g/cm(3), friction coefficient from 0.24 to 0.45, fracture toughness from 16.8 to 11.0 MPa.m(1/2). Scanning electron microscopy (SEM), X-ray and electron diffraction phase analysis were used to examine the WC-Co hardmetal with addition of the TiC0.9 phase. For comparison, physical and mechanical properties of the WC-Co hardmetals before modification were tested.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Influence of boron on diamond growth on WC-Co hardmetals
    Kalss, W
    Bohr, S
    Haubner, R
    Lux, B
    Griesser, M
    Spicka, H
    Grasserbauer, M
    Wurzinger, P
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 1996, 14 (1-3): : 137 - 144
  • [32] HIP after sintering of ultrafine WC-Co hardmetals
    Sánchez, JM
    Ordóñez, A
    González, R
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2005, 23 (03): : 193 - 198
  • [33] A study on the mechanical behaviour of WC/Co hardmetals
    Ferreira, J. A. M.
    Amaral, M. A. Pina
    Antunes, F. V.
    Costa, J. D. M.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2009, 27 (01): : 1 - 8
  • [34] A new approach to fabrication of gradient WC-Co hardmetals
    Konyashin, I.
    Hlawatschek, S.
    Ries, B.
    Lachmann, F.
    Sologubenko, A.
    Weirich, T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (02): : 228 - 237
  • [35] Comparison of the friction and wear behaviour of WC-Ni-Co-Cr and WC-Co hardmetals in contact with steel at high temperatures
    Aristizabal, M.
    Ardila, L. C.
    Veiga, F.
    Arizmendi, M.
    Fernandez, J.
    Sanchez, J. M.
    WEAR, 2012, 280 : 15 - 21
  • [36] FATIGUE-CRACK GROWTH IN WC-CO HARDMETALS
    ALMOND, EA
    ROEBUCK, B
    METALS TECHNOLOGY, 1980, 7 (FEB): : 83 - 85
  • [37] Fracture modelling of WC-Co hardmetals using crystal plasticity theory and the Gurson model
    Connolly, P
    McHugh, PE
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1999, 22 (01) : 77 - 86
  • [38] Microscale abrasion-corrosion behaviour of WC-Co hardmetals and HVOF sprayed coatings
    Shipway, PH
    Howell, L
    WEAR, 2005, 258 (1-4) : 303 - 312
  • [39] Fracture modelling of WC-Co hardmetals using crystal plasticity theory and the Gurson model
    Connolly, P.
    McHugh, P.E.
    Fatigue and Fracture of Engineering Materials and Structures, 1999, 22 (01): : 77 - 86
  • [40] Explicit fracture modelling of cemented tungsten carbide (WC-Co) at the mesoscale
    Herd, S.
    Wood, R. J. K.
    Wharton, J. A.
    Higgs, C. F., III
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 712 : 521 - 530