Markovian embedding of generalized Langevin equations with a nonlinear friction kernel and configuration-dependent mass

被引:1
|
作者
Ayaz, Cihan [1 ]
Tepper, Lucas [1 ]
Netz, Roland R. [1 ]
机构
[1] Free Univ Berlin, Dept Phys, Berlin, Germany
来源
TURKISH JOURNAL OF PHYSICS | 2022年 / 46卷 / 06期
基金
欧洲研究理事会;
关键词
Non-Markovian processes; Markovian embedding; nonlinear friction; configuration-dependent mass;
D O I
10.55730/1300-0101.2726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalized Langevin equation (GLE) in which the deterministic force, the mass and the friction kernel are configuration-dependent, i.e. general nonlinear functions of the reaction coordinate. We introduce a projection operator that allows for a self-consistent Markovian embedding of such GLEs. Self -consistency means that trajectories generated by the Markovian embedding are described by a GLE with the same configuration-dependent deterministic force, mass and friction kernel. Using the projection operator, we derive a closed-form relation between the parameters of the Markovian embedding Langevin equations and the parameters of the GLE. This is accomplished by applying the projection operator formalism to the system of Markovian embedding stochastic equations.
引用
收藏
页码:194 / 205
页数:13
相关论文
共 50 条
  • [21] Exponential Convergence Rates of Nonlinear Mechanical Systems: The 1-DoF Case With Configuration-Dependent Inertia
    Calzolari, Davide
    Della Santina, Cosimo
    Albu-Schaeffer, Alin
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 445 - 450
  • [23] Phenomenological memory-kernel master equations and time-dependent Markovian processes
    Mazzola, L.
    Laine, E. -M.
    Breuer, H. -P.
    Maniscalco, S.
    Piilo, J.
    PHYSICAL REVIEW A, 2010, 81 (06)
  • [24] Nonlinear Langevin time-delay differential equations with generalized Caputo fractional derivatives
    Dien, Nguyen Minh
    FILOMAT, 2023, 37 (19) : 6487 - 6495
  • [25] Cooperative mechanism of resonant behaviors in a fluctuating-mass generalized Langevin system with generalized Mittag-Leffler memory kernel
    Lin, Lifeng
    Chen, Cong
    Wang, Huiqi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (11):
  • [26] Analysis of nonlinear ordinary differential equations with the generalized Mittag-Leffler kernel
    Atangana, Abdon
    Mishra, Jyoti
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19763 - 19780
  • [27] Generalized separation of variables in nonlinear heat and mass transfer equations
    Polyanin, AD
    Zhurov, AI
    Vyazmin, AV
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2000, 25 (3-4) : 251 - 267
  • [28] Existence, Stability and Simulation of a Class of Nonlinear Fractional Langevin Equations Involving Nonsingular Mittag-Leffler Kernel
    Zhao, Kaihong
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [29] Strong error analysis of Euler methods for overdamped generalized Langevin equations with fractional noise: Nonlinear case
    Dai, Xinjie
    Hong, Jialin
    Sheng, Derui
    Zhou, Tau
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 1981 - 2006
  • [30] On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions
    Boutiara, Abdelatif
    Abdo, Mohammed S.
    Alqudah, Manar A.
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2021, 6 (06): : 5518 - 5534