Modeling wildland fire with DIRSIG

被引:0
|
作者
Wang, Z [1 ]
Vodacek, A [1 ]
Kremens, RL [1 ]
Ononye, A [1 ]
机构
[1] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA
来源
关键词
DIRSIG; wildland fire; blackbody radiance; thermal radiance;
D O I
10.1117/12.543339
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The purpose of this paper is to describe a physics based fire model in DIRSIG. The main objective is to utilize research on radiative emissions from fire to create a 3D rendering of a scene to generate a synthetic multispectral or hyperspectral image of wildfire. These synthetic images can be used to evaluate detection algorithms and sensor platforms. To produce realistic flame structures and realistic spectral emission across the visible and infrared spectrum, we first need to produce 3D time-dependent data describing the fire evolution and its interaction with the environment. Here we utilize an existing coupled atmosphere-fire model to represent the finescale dynamics of convective processes in a wildland fire. Then the grid-based output from the fire propagation model can be used in DIRSIG along with the spectral emission representative of a wildland fire to run the ray-tracing model to create the synthetic scene. The technical approach is based on a solid understanding of user requirements for format and distribution of the information provided by a high spatial resolution remote sensing system.
引用
收藏
页码:290 / 296
页数:7
相关论文
共 50 条
  • [21] Wildland fire entrainment: The missing link between wildland fire and its environment
    Linn, Rodman R.
    Hiers, John Kevin
    O'Brien, Joseph J.
    Yedinak, Kara
    Hoffman, Chad
    Canfield, Jesse
    Robinson, David
    Goodrick, Scott
    PNAS NEXUS, 2025, 4 (01):
  • [22] Wildland fire modeling with an Eulerian level set method and automated calibration
    Lautenberger, Chris
    FIRE SAFETY JOURNAL, 2013, 62 : 289 - 298
  • [23] Numerical modeling of wildland surface fire propagation by evolving surface curves
    Martin Ambroz
    Martin Balažovjech
    Matej Medl’a
    Karol Mikula
    Advances in Computational Mathematics, 2019, 45 : 1067 - 1103
  • [24] Large eddy simulation of forest canopy flow for wildland fire modeling
    Mueller, Eric
    Mell, William
    Simeoni, Albert
    CANADIAN JOURNAL OF FOREST RESEARCH, 2014, 44 (12) : 1534 - 1544
  • [25] Probabilistic risk modeling at the wildland urban interface: the 2003 Cedar Fire
    Brillinger, D. R.
    Autrey, B. S.
    Cattaneo, M. D.
    ENVIRONMETRICS, 2009, 20 (06) : 607 - 620
  • [26] Spatially modeling wildland fire severity in pine forests of Galicia, Spain
    Fernandez-Alonso, Jose M.
    Vega, Jose A.
    Jimenez, Enrique
    Ruiz-Gonzalez, Ana D.
    Alvarez-Gonzalez, Juan G.
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2017, 136 (01) : 105 - 121
  • [27] MODELING WILDLAND FIRE CONTAINMENT WITH UNCERTAIN FLAME LENGTH AND FIRELINE WIDTH
    MEES, R
    STRAUSS, D
    CHASE, R
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 1993, 3 (03) : 179 - 185
  • [28] Wildland Fire Behaviour Case Studies and Fuel Models for Landscape-Scale Fire Modeling
    Santoni, Paul-Antoine
    Filippi, Jean-Baptiste
    Balbi, Jacques-Henri
    Bosseur, Frederic
    JOURNAL OF COMBUSTION, 2011, 2011
  • [29] Numerical modeling of wildland surface fire propagation by evolving surface curves
    Ambroz, Martin
    Balazovjech, Martin
    Medl'a, Matej
    Mikula, Karol
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 1067 - 1103
  • [30] Spatially modeling wildland fire severity in pine forests of Galicia, Spain
    José M. Fernández-Alonso
    José A. Vega
    Enrique Jiménez
    Ana D. Ruiz-González
    Juan G. Álvarez-González
    European Journal of Forest Research, 2017, 136 : 105 - 121