Modeling wildland fire with DIRSIG

被引:0
|
作者
Wang, Z [1 ]
Vodacek, A [1 ]
Kremens, RL [1 ]
Ononye, A [1 ]
机构
[1] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA
来源
关键词
DIRSIG; wildland fire; blackbody radiance; thermal radiance;
D O I
10.1117/12.543339
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The purpose of this paper is to describe a physics based fire model in DIRSIG. The main objective is to utilize research on radiative emissions from fire to create a 3D rendering of a scene to generate a synthetic multispectral or hyperspectral image of wildfire. These synthetic images can be used to evaluate detection algorithms and sensor platforms. To produce realistic flame structures and realistic spectral emission across the visible and infrared spectrum, we first need to produce 3D time-dependent data describing the fire evolution and its interaction with the environment. Here we utilize an existing coupled atmosphere-fire model to represent the finescale dynamics of convective processes in a wildland fire. Then the grid-based output from the fire propagation model can be used in DIRSIG along with the spectral emission representative of a wildland fire to run the ray-tracing model to create the synthetic scene. The technical approach is based on a solid understanding of user requirements for format and distribution of the information provided by a high spatial resolution remote sensing system.
引用
收藏
页码:290 / 296
页数:7
相关论文
共 50 条
  • [1] Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System
    French, Nancy H. F.
    McKenzie, Donald
    Erickson, Tyler
    Koziol, Benjamin
    Billmire, Michael
    Endsley, K. Arthur
    Scheinerman, Naomi K. Yager
    Jenkins, Liza
    Miller, Mary Ellen
    Ottmar, Roger
    Prichard, Susan
    EARTH INTERACTIONS, 2014, 18 : 1 - 26
  • [2] Mathematical modeling of wildland fire initiation and spread
    Agranat, Vladimir
    Perminov, Valeriy
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 125 (125)
  • [3] Mathematical modeling and predicting wildland fire effects
    Albini, FA
    Brown, JK
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1996, 32 (05) : 520 - 533
  • [4] Modeling wildland fire susceptibility using fuzzy systems
    Ercanoglu, Murat
    Weber, Keith T.
    Langille, Jackie
    Neves, Richard
    GISCIENCE & REMOTE SENSING, 2006, 43 (03) : 268 - 282
  • [5] Modeling wildland fire propagation with level set methods
    Mallet, V.
    Keyes, D. E.
    Fendell, F. E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (07) : 1089 - 1101
  • [6] DDDAS approaches to wildland fire modeling and contaminant tracking
    Douglas, Craig C.
    Lodder, Robert A.
    Beezley, Jonathan D.
    Mandel, Jan
    Ewing, Richard E.
    Efendiev, Yalchin
    Qin, Guan
    Iskandarani, Mohamed
    Coen, Janice
    Vodacek, Anthony
    Kritz, Mauricio
    Haase, Gundolf
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 2117 - +
  • [7] Wildland fire
    Forum Appl Res Public Policy, 1 (30-34):
  • [8] Coupled fire–atmosphere modeling of wildland fire spread using DEVS-FIRE and ARPS
    Nathan Dahl
    Haidong Xue
    Xiaolin Hu
    Ming Xue
    Natural Hazards, 2015, 77 : 1013 - 1035
  • [9] Wildland Fire Spread Modeling Using Convolutional Neural Networks
    Jonathan L. Hodges
    Brian Y. Lattimer
    Fire Technology, 2019, 55 : 2115 - 2142
  • [10] Bivariate Extreme Value Modeling of Wildland Fire Area and Duration
    Sun, Changyou
    FOREST SCIENCE, 2013, 59 (06) : 649 - 660