Embedding Sequential Information into Spatiotemporal Features for Action Recognition

被引:11
|
作者
Ye, Yuancheng [1 ]
Tian, Yingli [1 ,2 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10021 USA
[2] CUNY, City Coll, New York, NY 10021 USA
关键词
D O I
10.1109/CVPRW.2016.142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a novel framework for video-based action recognition, which incorporates the sequential information with the spatiotemporal features. Specifically, the spatiotemporal features are extracted from the sliced clips of videos, and then a recurrent neural network is applied to embed the sequential information into the final feature representation of the video. In contrast to most current deep learning methods for the video-based tasks, our framework incorporates both long-term dependencies and spatiotemporal information of the clips in the video. To extract the spatiotemporal features from the clips, both dense trajectories (DT) and a newly proposed 3D neural network, C3D, are applied in our experiments. Our proposed framework is evaluated on the benchmark datasets of UCF101 and HMDB51, and achieves comparable performance compared with the state-of-the-art results.
引用
收藏
页码:1110 / 1118
页数:9
相关论文
共 50 条
  • [41] STAR: Efficient SpatioTemporal Modeling for Action Recognition
    Abhijeet Kumar
    Samuel Abrams
    Abhishek Kumar
    Vijaykrishnan Narayanan
    Circuits, Systems, and Signal Processing, 2023, 42 : 705 - 723
  • [42] Spatiotemporal features of human motion for gait recognition
    Muhammad Hassan Khan
    Muhammad Shahid Farid
    Marcin Grzegorzek
    Signal, Image and Video Processing, 2019, 13 : 369 - 377
  • [43] Dynamic Scene Recognition with Complementary Spatiotemporal Features
    Feichtenhofer, Christoph
    Pinz, Axel
    Wildes, Richard P.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (12) : 2389 - 2401
  • [44] Recurrent Spatiotemporal Feature Learning for Action Recognition
    Chen, Ze
    Lu, Hongtao
    ICRAI 2018: PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE -, 2018, : 12 - 17
  • [45] Spatiotemporal Relation Networks for Video Action Recognition
    Liu, Zheng
    Hu, Haifeng
    IEEE ACCESS, 2019, 7 : 14969 - 14976
  • [46] Spatiotemporal Multiplier Networks for Video Action Recognition
    Feichtenhofer, Christoph
    Pinz, Axel
    Wildes, Richard P.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7445 - 7454
  • [47] Nesting spatiotemporal attention networks for action recognition
    Li, Jiapeng
    Wei, Ping
    Zheng, Nanning
    NEUROCOMPUTING, 2021, 459 : 338 - 348
  • [48] STM: SpatioTemporal and Motion Encoding for Action Recognition
    Jiang, Boyuan
    Wang, MengMeng
    Gan, Weihao
    Wu, Wei
    Yan, Junjie
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2000 - 2009
  • [49] Spatiotemporal wavelet correlogram for human action recognition
    Hamid Abrishami Moghaddam
    Amin Zare
    International Journal of Multimedia Information Retrieval, 2019, 8 : 167 - 180
  • [50] Fast spatiotemporal MACH filter for action recognition
    Javed Ahmed
    Sadaf Abbasi
    M. Zakir Shaikh
    Machine Vision and Applications, 2013, 24 : 909 - 918