Embedding Sequential Information into Spatiotemporal Features for Action Recognition

被引:11
|
作者
Ye, Yuancheng [1 ]
Tian, Yingli [1 ,2 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10021 USA
[2] CUNY, City Coll, New York, NY 10021 USA
关键词
D O I
10.1109/CVPRW.2016.142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a novel framework for video-based action recognition, which incorporates the sequential information with the spatiotemporal features. Specifically, the spatiotemporal features are extracted from the sliced clips of videos, and then a recurrent neural network is applied to embed the sequential information into the final feature representation of the video. In contrast to most current deep learning methods for the video-based tasks, our framework incorporates both long-term dependencies and spatiotemporal information of the clips in the video. To extract the spatiotemporal features from the clips, both dense trajectories (DT) and a newly proposed 3D neural network, C3D, are applied in our experiments. Our proposed framework is evaluated on the benchmark datasets of UCF101 and HMDB51, and achieves comparable performance compared with the state-of-the-art results.
引用
收藏
页码:1110 / 1118
页数:9
相关论文
共 50 条
  • [1] Exploiting Spatiotemporal Features for Action Recognition
    Bin Muslim, Usairam
    Khan, Muhammad Hassan
    Farid, Muhammad Shahid
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 613 - 619
  • [2] Embedding Motion and Structure Features for Action Recognition
    Zhen, Xiantong
    Shao, Ling
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (07) : 1182 - 1190
  • [3] Constructing Hierarchical Spatiotemporal Information for Action Recognition
    Yao, Guangle
    Zhong, Jiandan
    Lei, Tao
    Liu, Xianyuan
    2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2018, : 596 - 602
  • [4] Spatiotemporal Features for Action Recognition and Salient Event Detection
    Rapantzikos, Konstantinos
    Avrithis, Yannis
    Kollias, Stefanos
    COGNITIVE COMPUTATION, 2011, 3 (01) : 167 - 184
  • [5] Spatiotemporal Features for Action Recognition and Salient Event Detection
    Konstantinos Rapantzikos
    Yannis Avrithis
    Stefanos Kollias
    Cognitive Computation, 2011, 3 : 167 - 184
  • [6] A spatiotemporal and motion information extraction network for action recognition
    Wang, Wei
    Wang, Xianmin
    Zhou, Mingliang
    Wei, Xuekai
    Li, Jing
    Ren, Xiaojun
    Zong, Xuemei
    WIRELESS NETWORKS, 2024, 30 (06) : 5389 - 5405
  • [7] Color-Aware Local Spatiotemporal Features for Action Recognition
    Souza, Fillipe
    Valle, Eduardo
    Chavez, Guillermo
    Araujo, Arnaldo de A.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2011, 7042 : 248 - +
  • [8] Spatiotemporal attention enhanced features fusion network for action recognition
    Danfeng Zhuang
    Min Jiang
    Jun Kong
    Tianshan Liu
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 823 - 841
  • [9] Spatiotemporal attention enhanced features fusion network for action recognition
    Zhuang, Danfeng
    Jiang, Min
    Kong, Jun
    Liu, Tianshan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (03) : 823 - 841
  • [10] Facial Expression Recognition Using Depth Information and Spatiotemporal Features
    Uddin, Md. Zia
    2016 18TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATIONS TECHNOLOGY (ICACT) - INFORMATION AND COMMUNICATIONS FOR SAFE AND SECURE LIFE, 2016, : 726 - 731