Dynamics at the Polymer/Nanoparticle Interface in Poly(2-vinylpyridine)/Silica Nanocomposites

被引:248
|
作者
Holt, Adam P. [1 ]
Griffin, Philip J. [1 ]
Bocharova, Vera [2 ]
Agapov, Alexander L. [3 ]
Imel, Adam E. [3 ]
Dadmun, Mark D. [2 ,3 ]
Sangoro, Joshua R. [4 ]
Sokolov, Alexei P. [1 ,2 ,3 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[4] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
SMALL-ANGLE SCATTERING; GLASS-TRANSITION; POLYMER NANOCOMPOSITES; SEGMENTAL DYNAMICS; POLY(DIMETHYLSILOXANE)/SILICA NANOCOMPOSITES; POLY(VINYL ACETATE); IMMOBILIZED POLYMER; MOLECULAR-DYNAMICS; FILMS; PARTICLES;
D O I
10.1021/ma5000317
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The static and dynamic properties of poly(2-vinylpyridine)/silica nanocomposites are investigated by temperature modulated differential scanning calorimetry, broadband dielectric spectroscopy (BDS), small-angle X-ray scattering (SAXS), and transmission electron microscopy. Both BDS and SAXS detect the existence of an interfacial polymer layer on the surface of nanoparticles. The results show that whereas the calorimetric glass transition temperature varies only weakly with nanoparticle loading, the segmental mobility of the polymer interfacial layer is slower than the bulk polymer by 2 orders of magnitude. Detailed analysis of BDS and SAXS data reveal that the interfacial layer has a thickness of 4-6 nm irrespective of the nanoparticle concentration. These results demonstrate that in contrast to some recent articles on polymer nanocomposites, the interfacial polymer layer is by no means a "dead layer". However, its existence might provide some explanation for controversies surrounding the dynamics of polymer nanocomposites.
引用
收藏
页码:1837 / 1843
页数:7
相关论文
共 50 条
  • [21] ISOTACTIC POLY(2-VINYLPYRIDINE), COORDINATION POLYMERS, AND MAGNETIC NANOCOMPOSITES FROM CHROMIUM ATOMS
    DEAKIN, L
    DENAUWER, C
    REVOL, JF
    ANDREWS, MP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (39) : 9915 - 9916
  • [22] Thermal degradation of poly(2-vinylpyridine) copolymers
    Orhan, Tugba
    Hacaloglu, Jale
    POLYMER DEGRADATION AND STABILITY, 2013, 98 (01) : 356 - 360
  • [23] Molecular Level Ordering in Poly(2-vinylpyridine)
    Changez, Mohammad
    Koh, Haeng-Deog
    Kang, Nam-Goo
    Kim, Jin-Gyu
    Kim, Youn-Joong
    Samal, Shashadhar
    Lee, Jae-Suk
    ADVANCED MATERIALS, 2012, 24 (24) : 3253 - 3257
  • [24] COPPER-COMPLEXES WITH POLY(2-VINYLPYRIDINE)
    LYONS, AM
    PEARCE, EM
    VASILE, MJ
    MUJSCE, AM
    WASZCZAK, JV
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 193 : 335 - INOR
  • [25] CHARACTERIZATION OF BENZENE AS A SOLVENT FOR POLY(2-VINYLPYRIDINE)
    SEERY, TAP
    AMIS, EJ
    MACROMOLECULES, 1991, 24 (19) : 5463 - 5467
  • [26] ELECTROPOLYMERIZATION OF POLY(2-VINYLPYRIDINE) FILMS ON ZINC
    DEBRUYNE, A
    DELPLANCKE, JL
    WINAND, R
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1995, 25 (03) : 284 - 290
  • [27] The dispersion of magnetic nanorods in poly(2-vinylpyridine)
    Lo, Chieh-Tsung
    Tsui, Kai-Hsiang
    POLYMER INTERNATIONAL, 2013, 62 (11) : 1652 - 1658
  • [28] SPONTANEOUS DIMERIZATION OF LIVING POLY(2-VINYLPYRIDINE)
    TOREKI, W
    HOGENESCH, TE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 196 : 265 - POLY
  • [29] Proton uptake by poly(2-vinylpyridine) coatings
    Tantavichet, N
    Pritzker, MD
    Burns, CM
    JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 81 (06) : 1493 - 1497
  • [30] COPPER CHLORIDE COMPLEXES WITH POLY(2-VINYLPYRIDINE)
    LYONS, AM
    PEARCE, EM
    VASILE, MJ
    MUJSCE, AM
    WASZCZAK, JV
    ACS SYMPOSIUM SERIES, 1988, 360 : 430 - 436