Construction of vertex operator algebras from commutative associative algebras

被引:11
|
作者
Lam, CH
机构
[1] Department of Mathematics, Ohio State University, Columbus
关键词
D O I
10.1080/00927879608825819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a commutative associative algebra A with an associative form (,), we construct a vertex operator algebra V with the weight two space V-2 congruent to A. If in addition the form (,) is nondegenerate, we show that there is a simple vertex operator algebra with V-2 congruent to A. We also show that if A is semisimple, then the vertex operator algebra constructed is the tensor products of a certain number of Virasoro vertex operator algebras.
引用
收藏
页码:4339 / 4360
页数:22
相关论文
共 50 条
  • [21] Commutative radical operator algebras
    Peters, JR
    Wogen, WR
    [J]. JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 405 - 424
  • [22] Novikov-Poisson algebras and associative commutative derivation algebras
    Zhelyabin, V. N.
    Tikhov, A. S.
    [J]. ALGEBRA AND LOGIC, 2008, 47 (02) : 107 - 117
  • [23] Novikov-Poisson algebras and associative commutative derivation algebras
    V. N. Zhelyabin
    A. S. Tikhov
    [J]. Algebra and Logic, 2008, 47 : 107 - 117
  • [24] Symmetric Symplectic Commutative Associative Algebras and Related Lie Algebras
    Baklouti, Amir
    Benayadi, Said
    [J]. ALGEBRA COLLOQUIUM, 2011, 18 : 973 - 986
  • [25] UNITARY ASSOCIATIVE ALGEBRAS ON A COMMUTATIVE BODY
    ANCOCHEA, G
    [J]. JOURNAL OF ALGEBRA, 1968, 8 (02) : 176 - &
  • [26] Degenerations of nilpotent associative commutative algebras
    Kaygorodov, Ivan
    Lopes, Samuel A.
    Popov, Yury
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1632 - 1639
  • [27] Vertex operator super algebras
    不详
    [J]. ELLIPTIC GENERA AND VERTEX OPERATOR SUPER-ALGEBRAS, 1999, 1704 : 49 - 92
  • [28] Deformation quantizations from vertex operator algebras
    Pan, Yiwen
    Peelaers, Wolfger
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [29] Deformation quantizations from vertex operator algebras
    Yiwen Pan
    Wolfger Peelaers
    [J]. Journal of High Energy Physics, 2020
  • [30] Parafermion vertex operator algebras
    Chongying Dong
    Qing Wang
    [J]. Frontiers of Mathematics in China, 2011, 6 : 567 - 579