Construction of vertex operator algebras from commutative associative algebras

被引:11
|
作者
Lam, CH
机构
[1] Department of Mathematics, Ohio State University, Columbus
关键词
D O I
10.1080/00927879608825819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a commutative associative algebra A with an associative form (,), we construct a vertex operator algebra V with the weight two space V-2 congruent to A. If in addition the form (,) is nondegenerate, we show that there is a simple vertex operator algebra with V-2 congruent to A. We also show that if A is semisimple, then the vertex operator algebra constructed is the tensor products of a certain number of Virasoro vertex operator algebras.
引用
收藏
页码:4339 / 4360
页数:22
相关论文
共 50 条
  • [1] Vertex operator algebras and associative algebras
    Dong, CY
    Li, HS
    Mason, G
    [J]. JOURNAL OF ALGEBRA, 1998, 206 (01) : 67 - 96
  • [2] Twisted representations of vertex operator algebras and associative algebras
    Dong, CY
    Li, HS
    Mason, G
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (08) : 389 - 397
  • [3] On associative algebras, modules and twisted modules for vertex operator algebras
    Yang, Jinwei
    [J]. JOURNAL OF ALGEBRA, 2015, 440 : 354 - 378
  • [4] Permutation orbifolds of vertex operator superalgebras and associative algebras
    Chongying Dong
    Feng Xu
    Nina Yu
    [J]. Science China(Mathematics), 2025, 68 (01) : 19 - 38
  • [5] Permutation orbifolds of vertex operator superalgebras and associative algebras
    Dong, Chongying
    Xu, Feng
    Yu, Nina
    [J]. SCIENCE CHINA-MATHEMATICS, 2023,
  • [6] A hamming code vertex operator algebra and construction of vertex operator algebras
    Miyamoto, M
    [J]. JOURNAL OF ALGEBRA, 1999, 215 (02) : 509 - 530
  • [7] Construction and classification of holomorphic vertex operator algebras
    van Ekeren, Jethro
    Moller, Sven
    Scheithauer, Nils R.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 2020 (759): : 61 - 99
  • [8] Construction and classification of holomorphic vertex operator algebras
    van Ekeren, Jethro
    Moeller, Sven
    Scheithauer, Nils R.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 61 - 99
  • [9] Quadratic Lie algebras and commutative associative algebras
    Zhu, LS
    Meng, DJ
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) : 2249 - 2268