ON NONINNER AUTOMORPHISMS OF FINITE NONABELIAN p-GROUPS

被引:10
|
作者
Ghoraishi, S. M. [1 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
关键词
finite p-groups; automorphisms; noninner automorphisms; ORDER-P; EXISTENCE;
D O I
10.1017/S0004972713000403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A long-standing conjecture asserts that every finite nonabelian p-group has a noninner automorphism of order p. In this paper the verification of the conjecture is reduced to the case of p-groups G satisfying Z(2)*(G) <= C-G(Z(2)*(G)) = Phi(G), where Z(2)*(G) is the preimage of Omega(1)(Z(2)(G)/Z(G)) in G. This improves Deaconescu and Silberberg's reduction of the conjecture: if Z(2)*(G) <= C-G(Z(2)*(G)) = Phi(G), then G has a noninner automorphism of order p leaving the Frattini subgroup ofG elementwise fixed [`Noninner automorphisms of order p of finite p-groups',
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [21] ON CENTRAL AUTOMORPHISMS OF FINITE p-GROUPS
    Sharma, Mahak
    Gumber, Deepak
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 1117 - 1122
  • [22] A NOTE ON AUTOMORPHISMS OF FINITE p-GROUPS
    Fernandez-Alcober, Gustavo A.
    Thillaisundaram, Anitha
    [J]. GLASNIK MATEMATICKI, 2016, 51 (01) : 117 - 123
  • [23] On Commuting Automorphisms of Finite p-Groups
    Singh, M.
    Garg, R.
    [J]. MATHEMATICAL NOTES, 2021, 110 (1-2) : 305 - 308
  • [24] On Autocentral Automorphisms of Finite p-Groups
    Chahal, Sandeep Singh
    Gumber, Deepak
    Kalra, Hemant
    [J]. RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [25] A NOTE ON AUTOMORPHISMS OF FINITE p-GROUPS
    Ghoraishi, S. Mohsen
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (01) : 24 - 26
  • [26] Power automorphisms of finite p-groups
    Morigi, M
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4853 - 4877
  • [27] POWER AUTOMORPHISMS OF FINITE P-GROUPS
    MEIXNER, T
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1981, 38 (04) : 345 - 360
  • [28] On automorphisms of some finite p-groups
    Manoj K. Yadav
    [J]. Proceedings Mathematical Sciences, 2008, 118 : 1 - 11
  • [29] On Autocentral Automorphisms of Finite p-Groups
    Sandeep Singh Chahal
    Deepak Gumber
    Hemant Kalra
    [J]. Results in Mathematics, 2021, 76
  • [30] A Note on Automorphisms of Finite p-Groups
    Soleimani, R.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (03)