ON NONINNER AUTOMORPHISMS OF FINITE NONABELIAN p-GROUPS

被引:10
|
作者
Ghoraishi, S. M. [1 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
关键词
finite p-groups; automorphisms; noninner automorphisms; ORDER-P; EXISTENCE;
D O I
10.1017/S0004972713000403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A long-standing conjecture asserts that every finite nonabelian p-group has a noninner automorphism of order p. In this paper the verification of the conjecture is reduced to the case of p-groups G satisfying Z(2)*(G) <= C-G(Z(2)*(G)) = Phi(G), where Z(2)*(G) is the preimage of Omega(1)(Z(2)(G)/Z(G)) in G. This improves Deaconescu and Silberberg's reduction of the conjecture: if Z(2)*(G) <= C-G(Z(2)*(G)) = Phi(G), then G has a noninner automorphism of order p leaving the Frattini subgroup ofG elementwise fixed [`Noninner automorphisms of order p of finite p-groups',
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条