Plasmon-Exciton Coupling Effect on Plasmon Damping

被引:0
|
作者
Ye, Lulu [1 ,2 ]
Zhang, Weidong [1 ,2 ]
Hu, Aiqin [1 ,2 ]
Lin, Hai [1 ,2 ]
Tang, Jinglin [1 ,2 ]
Wang, Yunkun [1 ,2 ]
Pan, Chenxinyu [3 ]
Wang, Pan [3 ]
Guo, Xin [3 ]
Tong, Limin [3 ]
Gao, Yunan [1 ,2 ,4 ,5 ]
Gong, Qihuang [1 ,2 ,4 ,5 ]
Lu, Guowei [1 ,2 ,4 ,5 ]
机构
[1] Peking Univ, Sch Phys, Frontiers Sci Ctr Nanooptoelect, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Coll Opt Sci & Engn, Hangzhou 310027, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[5] Peking Univ Yangtze Delta Inst Optoelect, Nantong 226010, Jiangsu, Peoples R China
来源
ADVANCED PHOTONICS RESEARCH | 2022年 / 3卷 / 04期
基金
中国国家自然科学基金;
关键词
2D materials; exciton; nanoparticle; plasmon damping; scattering; GOLD NANORODS; ELECTRON-TRANSFER; SCATTERING; ABSORPTION; RESONANCES; MONOLAYER; LINEWIDTH; EMISSION; WSE2; HOT;
D O I
10.1002/adpr.202100281
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plasmon decay via the surface or interface is a critical process for practical energy conversion and plasmonic catalysis. However, the relationship between plasmon damping and the coupling between the plasmon and 2D materials is still unclear. The spectral splitting due to plasmon-exciton interaction impedes the conventional single-particle method to evaluate the plasmon damping rate by spectral linewidth. The interaction between a single gold nanorod and 2D materials using the single-particle spectroscopy technique assisted with in situ nanomanipulation is investigated. The approach allows to indisputably identify that the plasmon-exciton coupling would induce plasmon damping in the GNR-WSe2 hybrid. It is confirmed that the resonant energy transfer channel dominates the plasmon decay rather than the charge transfer channel in the GNR-graphene hybrid first. The contribution of the charge transfer channel by using thin hBN layers as an intermediate medium to block the charge transfer is excluded. It is also found that the contact layer between the GNR and 2D materials contributes most of the interfacial plasmon damping. These findings contribute to a deep understanding of interfacial excitonic effects on the plasmon and 2D materials hybrid.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Battling absorptive losses by plasmon-exciton coupling in multimeric nanostructures
    Rashed, Alireza Rahimi
    De Luca, Antonio
    Dhama, Rakesh
    Hosseinzadeh, Arash
    Infusino, Melissa
    El Kabbash, Mohamed
    Ravaine, Serge
    Bartolino, Roberto
    Strangi, Giuseppe
    [J]. RSC ADVANCES, 2015, 5 (66): : 53245 - 53254
  • [22] Effect of the plasmon-exciton coupling on the optical response of a ZnO/Ag/ZnO nanocomposite
    Koleva, M. E.
    Nedyalkov, N. N.
    Atanasov, P. A.
    [J]. 18TH INTERNATIONAL SUMMER SCHOOL ON VACUUM, ELECTRON AND ION TECHNOLOGIES (VEIT2013), 2014, 514
  • [23] Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities
    Li, Rui-Qi
    Hernangomez-Perez, D.
    Garcia-Vidal, F. J.
    Fernandez-Dominguez, A. I.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (10)
  • [24] Observing Nonlinear Plasmon-Exciton Coupling for Enhanced Harmonic Generation
    Zhong, Jinhui
    Yi, Juemin
    Wang, Dong
    Korte, Anke
    Chimeh, Abbas
    Schaaf, Peter
    Runge, Erich
    Lienau, Christoph
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [25] Nanoscale plasmon-exciton interaction: the role of radiation damping and mode-volume in determining coupling strength
    Kumar, Manish
    Dey, Jyotirban
    Verma, Mrigank Singh
    Chandra, Manabendra
    [J]. NANOSCALE, 2020, 12 (21) : 11612 - 11618
  • [26] Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling
    Niu, Yijie
    Xu, Hongxing
    Wei, Hong
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (16)
  • [27] Electron-plasmon and plasmon-exciton interactions in molecular junctions
    Nitzan, Abraham
    Galperin, Michael
    Sukharev, Maxim
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [28] Exploring plasmon-exciton coupling at the surface of TiO2 nanorods
    DeLacy, Brendan
    McCarthy, Danielle
    Zander, Zachary
    Rao, Yi
    Fang, Hui
    Dai, Hai-Lung
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures
    Sun, Jiawei
    Li, Yang
    Hu, Huatian
    Chen, Wen
    Zheng, Di
    Zhang, Shunping
    Xu, Hongxing
    [J]. NANOSCALE, 2021, 13 (08) : 4408 - 4419
  • [30] Plasmon-exciton coupling between silver nanowire and two quantum dots
    Li, Qiang
    Wei, Hong
    Xu, Hongxing
    [J]. PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XII, 2014, 9163