Silicon nanostructuring for 3D bulk silicon versatile devices

被引:7
|
作者
Bopp, M. [1 ]
Coronel, P. [2 ]
Bustos, J. [3 ]
Pribat, C. [3 ]
Dainesi, P. [1 ]
Skotnicki, T. [3 ]
Ionescu, A. M. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Nanolab, CH-1015 Lausanne, Switzerland
[2] CEA, LITEN, Grenoble, France
[3] ST Microelect, F-38926 Crolles, France
关键词
Silicon reflow; Hydrogen annealing; 3D nanostructure design; Hard mask;
D O I
10.1016/j.mee.2008.12.083
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fabrication method for silicon beams and membranes defined in lateral and vertical dimensions, as well as superposed silicon membranes, all realized in bulk silicon using only one lithographic step is proposed. This proposal is based on observations made on structures obtained by High Temperature Annealing (HTA) in hydrogen atmosphere process. The combination of design configuration and materials technology (hard mask) with the process shows the possibility of new 3D devices and cavities beyond previously reported capabilities of with this technique. The specific design and hard mask engineering presented can lead to structures used in a bulk silicon platform for 3D devices with optical and electronic functions for the fabrication of bulk silicon waveguides and transistors on stressed membranes with enhanced mobility. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:885 / 888
页数:4
相关论文
共 50 条
  • [1] Macroporous silicon:: A versatile material for 3D structure fabrication
    Trifonov, T.
    Rodriguez, A.
    Marsal, L. F.
    Pallares, J.
    Alcubilla, R.
    SENSORS AND ACTUATORS A-PHYSICAL, 2008, 141 (02) : 662 - 669
  • [2] Fabrication of 3D photonic components on bulk crystalline silicon
    Liang, H. D.
    Vanga, S. K.
    Wu, J. F.
    Xiong, B. Q.
    Yang, C. Y.
    Bettiol, A. A.
    Breese, M. B. H.
    OPTICS EXPRESS, 2015, 23 (01): : 121 - 129
  • [3] Scalable 3D dense integration of photonics on bulk silicon
    Sherwood-Droz, Nicolas
    Lipson, Michal
    OPTICS EXPRESS, 2011, 19 (18): : 17758 - 17765
  • [4] 3D stacked arrays of fins and nanowires on bulk silicon
    Bopp, M.
    Coronel, P.
    Hibert, C.
    Ionescu, A. M.
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 1348 - 1351
  • [5] 'In-chip' devices enable truly 3D silicon photonics
    Overton, Gail
    LASER FOCUS WORLD, 2017, 53 (12): : 15 - 18
  • [6] Cohesive Zone Modeling of 3D Delamination in Encapsulated Silicon Devices
    Ho, Siow Ling
    Joshi, Shailendra P.
    Tay, Andrew A. O.
    2012 IEEE 62ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2012, : 1493 - 1498
  • [7] 3D silicon integration
    Knickerbocker, J. U.
    Andry, P. S.
    Dang, B.
    Horton, R. R.
    Patel, C. S.
    Polastre, R. J.
    Sakuma, K.
    Sprogis, E. S.
    Tsang, C. K.
    Webb, B. C.
    Wright, S. L.
    58TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, PROCEEDINGS, 2008, : 538 - +
  • [8] 3D silicon detectors
    Bates, R. L.
    ASTROPARTICLE, PARTICLE, SPACE PHYSICS AND DETECTORS FOR PHYSICS APPLICATIONS, 2012, 7 : 829 - 840
  • [9] High performances 3D heterogeneous integrated devices based on 3D silicon capacitive interposer
    Jatlaoui, Mohamed Mehdi
    Muller, Charles
    2020 IEEE 22ND ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC), 2020, : 266 - 267
  • [10] Reliable Through Silicon Vias for 3D Silicon Applications
    Shapiro, M.
    Interrante, M.
    Andry, P.
    Dang, B.
    Tsang, C.
    Liptak, R.
    Griffith, J.
    Sprogis, E.
    Guerin, L.
    Truong, V.
    Berger, D.
    Knickerbocker, J.
    PROCEEDINGS OF THE 2009 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE, 2009, : 63 - +