Hall numbers and the composition algebra of the Kronecker algebra

被引:14
|
作者
Szanto, Csaba [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, RO-400084 Cluj Napoca, Romania
关键词
Kronecker algebra; Hall algebra; composition algebra; Hall polynomials; quantum affine algebra;
D O I
10.1007/s10468-006-9019-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present formulas for the structure constants (Hall numbers) of the Hall algebra H(kK) associated to the Kronecker algebra. The formulas which in some cases involve the classical Hall polynomials g((r)mu)(lambda) enable us to determine every Hall number. Using again these formulas we construct new PBW-bases with simple structure constants for the composition algebra C(kK), making possible the definition of the generic composition algebra via Hall polynomials.
引用
收藏
页码:465 / 495
页数:31
相关论文
共 50 条
  • [31] OPTIMISATION OF RAILWAY OPERATION BY APPLICATION OF KRONECKER ALGEBRA
    Volcic, Mark
    Blieberger, Johann
    Schoebel, Andreas
    ROAD AND RAIL INFRASTRUCTURE III, 2014, : 37 - 42
  • [32] Representations of constant socle rank for the Kronecker algebra
    Bissinger, Daniel
    FORUM MATHEMATICUM, 2020, 32 (01) : 23 - 43
  • [33] A generalized quantum cluster algebra of Kronecker type
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (01): : 670 - 685
  • [34] Decomposition theory of modules: the case of Kronecker algebra
    Asashiba, Hideto
    Nakashima, Ken
    Yoshiwaki, Michio
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2017, 34 (02) : 489 - 507
  • [35] HALL ALGEBRA OF THE PROJECTIVE LINE AND q-ONSAGER ALGEBRA
    Lu, M. I. N. G.
    Ruan, S. H. I. Q. U. A. N.
    Wang, W. E. I. Q. I. A. N. G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022,
  • [36] The Hall algebra of a spherical object
    Keller, Bernhard
    Yang, Dong
    Zhou, Guodong
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 771 - 784
  • [37] On the double of the Hall algebra of a quiver
    Sevenhant, B
    Van den Bergh, M
    JOURNAL OF ALGEBRA, 1999, 221 (01) : 135 - 160
  • [38] Hall algebra of morphism category
    Chen, Qinghua
    Zhang, Liwang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (04) : 1145 - 1164
  • [39] CATEGORIFICATION OF THE ELLIPTIC HALL ALGEBRA
    Mousaaid, Youssef
    Savage, Alistair
    DOCUMENTA MATHEMATICA, 2022, 27 : 1225 - 1274
  • [40] BPS Hall algebra of scattering Hall states
    Galakhov, Dmitry
    NUCLEAR PHYSICS B, 2019, 946