Parameter identification in a two-multiplier sediment yield model

被引:0
|
作者
Canfield, HE
Lopes, VL
机构
[1] USDA, ARS, Tucson, AZ 85719 USA
[2] Univ Arizona, Sch Renewable Nat Resources, Tucson, AZ 85721 USA
关键词
erosion; sedimentation; surface water hydrology; watershed modeling; parameter identification; rangeland watersheds;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A process based, distributed runoff erosion model (KINEROS2) was used to examine problems of parameter identification of sediment entrainment equations for small watersheds. Two multipliers were used to reflect the distributed nature of the sediment entrainment parameters: one multiplier for a raindrop induced entrainment parameter, and one multiplier for a flow induced entrainment parameter. The study was conducted in three parts. First, parameter identification was studied for simulated error free data sets where the parameter values were known. Second, the number of data points in the simulated sedigraphs was reduced to reflect the effect of temporal sampling frequency on parameter identification. Finally, event data from a small range-land watershed were used to examine parameter identifiability when the parameter values are unknown. Results demonstrated that whereas unique multiplier values can be obtained for simulated error free data, unique parameter values could not be obtained for some event data. Unique multiplier values for raindrop induced entrainment and flow induced entrainment were found for events with greater than a two-year return period (similar to25 mm) that also had at least 10 mm of rain in ten minutes. It was also found that the three-minute sampling frequency used for the sediment sampler might be inadequate to identify parameters in some cases.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条
  • [41] Semi-analytic parameter identification for complex yield functions
    Kuesters, Niklas
    Brosius, Alexander
    NUMIFORM 2016: THE 12TH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN INDUSTRIAL FORMING PROCESSES, 2016, 80
  • [42] Cohesive Sediment Modeling in a Shallow Estuary: Model and Environmental Implications of Sediment Parameter Variation
    Allen, Rachel M.
    Lacy, Jessica R.
    Stevens, Andrew W.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2021, 126 (09)
  • [43] Sparse model selection and parameter identification
    Duan, XJ
    Wang, ZM
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1746 - 1751
  • [44] The parameter identification of superplastic constitutive model
    Jin, QL
    Wu, HY
    SIMULATION OF MATERIALS PROCESSING: THEORY, METHODS AND APPLICATIONS, 2001, : 291 - 295
  • [45] Parameter Identification for a DNA replication model
    Koutroumpas, K.
    Lygerou, Z.
    Lygeros, J.
    8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2, 2008, : 468 - +
  • [46] Parameter Identification in a Tuberculosis Model for Cameroon
    Moualeu-Ngangue, Dany Pascal
    Roeblitz, Susanna
    Ehrig, Rainald
    Deuflhard, Peter
    PLOS ONE, 2015, 10 (04):
  • [47] Parameter identification for a TRIP model with backstress
    Wolff, M.
    Boehm, M.
    Dalgic, M.
    Loewisch, G.
    Lysenko, N.
    Rath, J.
    COMPUTATIONAL MATERIALS SCIENCE, 2006, 37 (1-2) : 37 - 41
  • [48] Parameter Identification and Forecast with a Biased Model
    Amadi, Miracle
    Haario, Heikki
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI, 2022, 39 : 227 - 232
  • [49] A method for model identification and parameter estimation
    Bambach, M.
    Heinkenschloss, M.
    Herty, M.
    INVERSE PROBLEMS, 2013, 29 (02)
  • [50] Parameter identification of the cohesive crack model
    Bolzon, G
    Ghilotti, D
    Maier, G
    MATERIAL IDENTIFICATION USING MIXED NUMERICAL EXPERIMENTAL METHODS, 1997, : 213 - 222